Possible onset of multifaceted excitation modes in Al29

[1]  S. Das,et al.  Extending the application of DSAM to atypical stopping media , 2017 .

[2]  K. Kravvaris,et al.  High-spin states in Al 29 and Mg 27 , 2016 .

[3]  N. Stone Table of Nuclear Electric Quadrupole Moments , 2016 .

[4]  R. G. Pillay,et al.  Role of neutrons in the coexistence of magnetic and antimagnetic rotation bands in 107 Cd , 2015 .

[5]  U. Garg,et al.  Level lifetimes in P 32 obtained using the Doppler-shift attenuation method with thick molecular targets , 2014 .

[6]  S. Bhattacharjee,et al.  Nuclear structure study of Mg26 following heavy-ion-induced fusion-evaporation reaction , 2014 .

[7]  G. H. Bhat,et al.  Exploring the Origin of Nearly Degenerate Doublet Bands in Ag 106 , 2013, 1310.7731.

[8]  R. G. Pillay,et al.  Experimental investigation of shell-model excitations of 89 Zr up to high spin , 2012 .

[9]  B. S. Naidu,et al.  A high speed digital data acquisition system for the Indian National Gamma Array at Tata Institute of Fundamental Research , 2012 .

[10]  M. Carpenter,et al.  Magnetic rotation and quasicollective structures in 58 Fe: Influence of the $\nu$ g 9/2 orbital , 2012 .

[11]  M. Basunia Nuclear Data Sheets for A = 27 , 2011 .

[12]  H. Liang,et al.  Novel structure for magnetic rotation bands in 60Ni , 2011, 1101.4547.

[13]  Zhang Shuang-quan,et al.  Exotic Magnetic Rotation in (22)F , 2010 .

[14]  U. Garg,et al.  Structure of 32 P at high spins , 2010 .

[15]  R. Firestone Nuclear Data Sheets for A = 25 , 2009 .

[16]  B. A. Brown,et al.  sd-shell observables for the USDA and USDB Hamiltonians , 2008 .

[17]  C. -. Yu,et al.  Deformations and Magnetic Rotations in the 60Ni Nucleus , 2008 .

[18]  E. Paul,et al.  Magnetic properties of smooth terminating dipole bands in 110,112 Te , 2006 .

[19]  A. Macchiavelli,et al.  THE SHEARS MECHANISM IN NUCLEI , 2003 .

[20]  S. Juutinen,et al.  Shears Mechanism in the A {approximately} 110 Region , 1999 .

[21]  D. C. Radford,et al.  ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets , 1995 .

[22]  A. Krämer-Flecken,et al.  Use of DCO ratios for spin determination in γ-γ coincidence measurements , 1989 .

[23]  F. Touchard,et al.  β-Decay schemes of very neutron-rich sodium isotopes and their descendants , 1984 .

[24]  F. Beck,et al.  Angular correlation and gamma ray linear polarization measurements in /sup 29/Al. [J,. pi. ] , 1976 .

[25]  R. O. Nelson,et al.  Gamma ray linear polarization measurements for $sup 29$Al , 1975 .

[26]  P. Ekström,et al.  Study of 29Al with the 26Mg(α, pγ)29Al reaction , 1974 .

[27]  G. Wagner,et al.  Proton shell structure of mass 28–32 nuclei , 1974 .

[28]  F. Beck,et al.  Lifetime measurements in 29 Al , 1974 .

[29]  D. Goosman,et al.  Mass and $beta$ decay of the new isotope $sup 29$Mg: systematics of masses of T/subz/ = 5/2 nuclides in the 2s-1d shell , 1973 .

[30]  B. Wildenthal,et al.  Shell model calculations for masses 27, 28 and 29: Specific application to 27, 28Mg and 28, 29Al , 1973 .

[31]  P. Glaudemans,et al.  Shell-model calculations for masses 27, 28 and 29: electromagnetic transition rates and multipole moments , 1972 .

[32]  J. Becker,et al.  STUDY OF THE LOW-LYING EXCITED STATES OF $sup 29$Al. III. MEAN LIFETIMES AND INTERPRETATION. , 1971 .

[33]  T. D. Jones Study of the Low-Lying Excited States of Al29. I. Si30(t, alpha)Al29 Direct-Reaction Investigation , 1969 .

[34]  H. Gove,et al.  Spin assignments in even-even nuclei between O16 and Ca40 , 1963 .