Wavelet shrinkage estimators of Hilbert transform
暂无分享,去创建一个
[1] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[2] G. Beylkin. On the representation of operators in bases of compactly supported wavelets , 1992 .
[3] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[4] G. Beylkin. Wavelets and Fast Numerical Algorithms , 1993, comp-gas/9304004.
[5] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[6] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[7] Dirong Chen,et al. Convergence of wavelet thresholding estimators of differential operators , 2008 .
[8] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[9] Y. Meyer,et al. Ondelettes et bases hilbertiennes. , 1986 .
[10] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[11] F. Abramovich,et al. On Optimality of Bayesian Wavelet Estimators , 2004 .
[12] B. Torrésani,et al. Wavelets: Mathematics and Applications , 1994 .
[13] Brani Vidakovic,et al. Almost Everywhere Behavior of General Wavelet Shrinkage Operators , 2000 .
[14] G. Nason. Choice of the Threshold Parameter in Wavelet Function Estimation , 1995 .
[15] T. Tao. On the Almost Everywhere Convergence of Wavelet Summation Methods , 1996 .
[16] Mark Kon,et al. Local Convergence for Wavelet Expansions , 1994 .
[17] G. Walter. Point wise Convergence of Wavelet Expansions , 2018, Wavelets and Other Orthogonal Systems.
[18] P. Morettin. Wavelets in Statistics , 1997 .
[19] A. Bruce,et al. WAVESHRINK WITH FIRM SHRINKAGE , 1997 .