Wavelet shrinkage estimators of Hilbert transform

Wavelet shrinkage is a strategy to obtain a nonlinear approximation to a given signal and is widely used in data compression, signal processing, statistics, etc. Based on wavelet shrinkage estimators of the original function f, we construct the estimators of its Hilbert transform Hf with the help of a representation due to Beylkin, Coifman and Rokhlin. The almost everywhere convergence and norm convergence of the proposed estimators are established.

[1]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[2]  G. Beylkin On the representation of operators in bases of compactly supported wavelets , 1992 .

[3]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[4]  G. Beylkin Wavelets and Fast Numerical Algorithms , 1993, comp-gas/9304004.

[5]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[6]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[7]  Dirong Chen,et al.  Convergence of wavelet thresholding estimators of differential operators , 2008 .

[8]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[9]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[10]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[11]  F. Abramovich,et al.  On Optimality of Bayesian Wavelet Estimators , 2004 .

[12]  B. Torrésani,et al.  Wavelets: Mathematics and Applications , 1994 .

[13]  Brani Vidakovic,et al.  Almost Everywhere Behavior of General Wavelet Shrinkage Operators , 2000 .

[14]  G. Nason Choice of the Threshold Parameter in Wavelet Function Estimation , 1995 .

[15]  T. Tao On the Almost Everywhere Convergence of Wavelet Summation Methods , 1996 .

[16]  Mark Kon,et al.  Local Convergence for Wavelet Expansions , 1994 .

[17]  G. Walter Point wise Convergence of Wavelet Expansions , 2018, Wavelets and Other Orthogonal Systems.

[18]  P. Morettin Wavelets in Statistics , 1997 .

[19]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .