CoRAD: Visual Analytics for Cohort Analysis

In this paper, we introduce a novel dynamic visual analytic tool called the Cohort Relative Aligned Dashboard (CoRAD). We present the design components of CoRAD, along with alternatives that lead to the final instantiation. We also present an evaluation involving expert clinical researchers, comparing CoRAD against an existing analytics method. The results of the evaluation show CoRAD to be more usable and useful for the target user. The relative alignment of physiologic data to clinical events were found to be a highlight of the tool. Clinical experts also found the interactive selection and filter functions to be useful in reducing information overload. Moreover, CoRAD was also found to allow clinical researchers to generate alternative hypotheses and test them in vivo.

[1]  M. P. Griffin,et al.  Heart Rate Characteristics and Laboratory Tests in Neonatal Sepsis , 2005, Pediatrics.

[2]  K. Schulz,et al.  Case-control studies: research in reverse , 2002, The Lancet.

[3]  J. Klein,et al.  Patterns of use of antibiotics in two newborn nurseries. , 1977, The New England journal of medicine.

[4]  Lee M. Rossey,et al.  Integrated Environment Management for Information Operations Testbeds , 2007, VizSEC.

[5]  Ben Shneiderman,et al.  LifeLines: using visualization to enhance navigation and analysis of patient records , 1998, AMIA.

[6]  Sheizaf Rafaeli,et al.  Off the Radar: Comparative Evaluation of Radial Visualization Solutions for Composite Indicators , 2016, IEEE Transactions on Visualization and Computer Graphics.

[7]  Roger D Feldman Filled Radar Charts Should not be Used to Compare Social Indicators , 2013 .

[8]  Daniel A. Keim,et al.  CloudLines: Compact Display of Event Episodes in Multiple Time-Series , 2011, IEEE Transactions on Visualization and Computer Graphics.

[9]  J. M. Eklund,et al.  Real-Time Analysis for Intensive Care: Development and Deployment of the Artemis Analytic System , 2010, IEEE Engineering in Medicine and Biology Magazine.

[10]  K. Schulz,et al.  Compared to what? Finding controls for case-control studies , 2005, The Lancet.

[11]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[12]  E. Keeler,et al.  Primer on certain elements of medical decision making. , 1975, The New England journal of medicine.

[13]  Daniel A. Keim,et al.  Monitoring Network Traffic with Radial Traffic Analyzer , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[14]  Ben Shneiderman,et al.  Cohort Comparison of Event Sequences with Balanced Integration of Visual Analytics and Statistics , 2015, IUI.

[15]  Richard F. Riesenfeld,et al.  A Survey of Radial Methods for Information Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[16]  A. James,et al.  A Process Mining Driven Framework for Clinical Guideline Improvement in Critical Care , 2011 .

[17]  Tamara Munzner,et al.  LiveRAC: interactive visual exploration of system management time-series data , 2008, CHI.

[18]  Charles Perin,et al.  TimeSpan: Using Visualization to Explore Temporal Multi-dimensional Data of Stroke Patients , 2016, IEEE Transactions on Visualization and Computer Graphics.

[19]  Phyllis K Stein,et al.  Challenges of heart rate variability research in the ICU. , 2013, Critical care medicine.

[20]  Carolyn McGregor,et al.  Variability analysis with analytics applied to physiological data streams from the neonatal intensive care unit , 2012, 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS).

[21]  David Gotz,et al.  DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  J. R. Moorman,et al.  Periodic heart rate decelerations in premature infants , 2010, Experimental biology and medicine.

[23]  F. Harrell,et al.  Abnormal Heart Rate Characteristics Preceding Neonatal Sepsis and Sepsis-Like Illness , 2003, Pediatric Research.

[24]  Carolyn McGregor,et al.  PhysioEx: Visual Analysis of Physiological Event Streams , 2016, Comput. Graph. Forum.

[25]  Yuval Shahar,et al.  Intelligent visualization and exploration of time-oriented data of multiple patients , 2010, Artif. Intell. Medicine.

[26]  F. Harrell,et al.  Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. , 2005, Pediatrics.

[27]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[28]  Vassilis Kostakos,et al.  Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems , 2008 .

[29]  Yarden Livnat,et al.  A visualization paradigm for network intrusion detection , 2005, Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop.

[30]  A. Stark,et al.  Heart rate characteristic index monitoring for bloodstream infection in an NICU: a 3-year experience , 2015, Archives of Disease in Childhood: Fetal and Neonatal Edition.

[31]  Ben Shneiderman,et al.  Temporal Event Sequence Simplification , 2013, IEEE Transactions on Visualization and Computer Graphics.