Comparison Between Different Notions of Stability for Laurent Systems

In this article, we examine a particular family of infinite-dimensional discrete autonomous systems given by a first-order state-space equation; the state transition matrix for this family is a Laurent polynomial matrix <inline-formula><tex-math notation="LaTeX">$A(\sigma,\sigma ^{-1})$</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">$\sigma$</tex-math></inline-formula> is the shift operator on <inline-formula><tex-math notation="LaTeX">$\mathbb {R}^n$</tex-math></inline-formula>-valued sequences. We term this family of systems as Laurent systems. We give necessary and sufficient conditions for the exponential <inline-formula><tex-math notation="LaTeX">$\ell ^2$</tex-math></inline-formula>-stability and the exponential <inline-formula><tex-math notation="LaTeX">$\ell ^{\infty }$</tex-math></inline-formula>-stability of Laurent systems. We also compare the following four different notions of stability for Laurent systems: the <inline-formula><tex-math notation="LaTeX">$\ell ^2$</tex-math></inline-formula>-stability, the exponential <inline-formula><tex-math notation="LaTeX">$\ell ^2$</tex-math></inline-formula>-stability, the <inline-formula><tex-math notation="LaTeX">$\ell ^{\infty }$</tex-math></inline-formula>-stability, and the exponential <inline-formula><tex-math notation="LaTeX">$\ell ^{\infty }$</tex-math></inline-formula>-stability; furthermore, we conclude that the <inline-formula><tex-math notation="LaTeX">$\ell ^2$</tex-math></inline-formula>-stability is an outlier.

[1]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[2]  S. H. Kulkarni,et al.  BANACH ALGEBRA TECHNIQUES TO COMPUTE SPECTRA, PSEUDOSPECTRA AND CONDITION SPECTRA OF SOME BLOCK OPERATORS WITH CONTINUOUS SYMBOLS , 2015 .

[3]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[4]  Maria Elena Valcher,et al.  Characteristic cones and stability properties of two-dimensional autonomous behaviors , 2000 .

[5]  K. Gu Stability and Stabilization of Infinite Dimensional Systems with Applications , 1999 .

[6]  Harish K. Pillai,et al.  Representation Formulae for Discrete 2D Autonomous Systems , 2013, SIAM J. Control. Optim..

[7]  Sergey Dashkovskiy,et al.  Input-to-state stability of infinite-dimensional control systems , 2012, Mathematics of Control, Signals, and Systems.

[8]  W. Rudin Principles of mathematical analysis , 1964 .

[9]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[10]  Balmohan V. Limaye,et al.  Linear Functional Analysis for Scientists and Engineers , 2016 .

[11]  Harish K. Pillai,et al.  ℓ∞-stability analysis of discrete autonomous systems described by Laurent polynomial matrix operators , 2016, Syst. Control. Lett..

[12]  Ulrich Oberst,et al.  The asymptotic stability of stable and time-autonomous discrete multidimensional behaviors , 2014, Math. Control. Signals Syst..

[13]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[14]  Diego Napp Avelli,et al.  Time-relevant stability of 2D systems , 2011, Autom..

[15]  Gerhard Klimeck,et al.  The discretized Schrödinger equation and simple models for semiconductor quantum wells , 2004 .

[16]  Harish K. Pillai,et al.  ℓ: The cases of infinite dimensional discrete autonomous systems and 2-D autonomous systems , 2017, Autom..

[17]  Krzysztof Galkowski,et al.  Control Systems Theory and Applications for Linear Repetitive Processes - Recent Progress and Open Research Questions , 2007 .

[18]  Harish K. Pillai,et al.  Behavior of $n$ Infinite Chains of Kinematic Points With the Immediate-Neighbors Interaction Dynamics , 2020, IEEE Transactions on Automatic Control.

[19]  Bruce A. Francis,et al.  Infinite chains of kinematic points , 2012, Autom..