Shell Interactions for Dirac Operators: On the Point Spectrum and the Confinement

Spectral properties and the confinement phenomenon for the coupling $H+V$ are studied, where $H=-i\alpha\cdot\nabla +m\beta$ is the free Dirac operator in ${\mathbb R}^3$ and $V$ is a measure-valued potential. The potentials $V$ under consideration are given in terms of surface measures on the boundary of bounded regular domains in ${\mathbb R}^3$. A criterion for the existence of point spectrum is given, with applications to electrostatic shell potentials. In the case of the sphere, an uncertainty principle is developed, and its relation to some eigenvectors of the coupling is shown. Furthermore, a criterion for generating confinement is given. As an application, some known results about confinement on the sphere for electrostatic plus Lorentz scalar shell potentials are generalized to regular surfaces.

[1]  P. Seba,et al.  Dirac operators with a spherically symmetric δ-shell interaction , 1989 .

[2]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[3]  S. Semmes,et al.  Analysis of and on uniformly rectifiable sets , 1993 .

[4]  A. Posilicano,et al.  Krein's resolvent formula for self-adjoint extensions of symmetric second-order elliptic differential operators , 2008, 0804.3312.

[5]  P. Seba On the absorption of eigenvalues by continuous spectrum in the one and three dimensional Dirac equation , 1988 .

[6]  L. Treust A variational study of some hadron bag models , 2012, 1207.1017.

[7]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[8]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[9]  F. Rellich,et al.  Über das asymptotische Verhalten der Lösungen von ...u + ...u = 0 in unendlichen Gebieten. , 1943 .

[10]  A. Posilicano,et al.  Self-adjoint, globally defined Hamiltonian operators for systems with boundaries , 2007, 0707.0948.

[11]  Gerald B. Folland,et al.  Introduction to Partial Differential Equations , 2020 .

[12]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[13]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[14]  J. Dolbeault,et al.  HARDY-TYPE ESTIMATES FOR DIRAC OPERATORS , 2007 .

[15]  Self-adjoint Extensions of Restrictions , 2007, math-ph/0703078.

[16]  M. Mitrea,et al.  Singular Integrals and Elliptic Boundary Problems on Regular Semmes–Kenig–Toro Domains , 2009 .

[17]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[18]  G. Folland Introduction to Partial Differential Equations , 1976 .

[19]  L. Vega,et al.  Shell interactions for Dirac operators , 2013, 1303.2519.

[20]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .