Photonic Lanterns, 3-D Waveguides, Multiplane Light Conversion, and Other Components That Enable Space-Division Multiplexing

Four-mode multiplexing and manipulation technologies are reviewed in the context of space-division multiplexing (SDM) optical communication systems. These are multiplane light conversion (MPLC), fused fiber devices, such as photonic lanterns and tapered fiber bundles, 3-D waveguides fabricated using ultrafast laser inscription, and free-space imaging systems. Each device has its unique strengths and use cases. MPLC can create very complex transformations between two arbitrary sets of spatial modes and leverages mature gray-scale lithographic techniques. Photonic lanterns and tapered fiber bundles are all-fiber devices that can convert beams on single-mode fiber inputs into spatial modes. The all-fiber construction leads to very low losses and high-power handling. 3-D waveguides are inscribed into a glass block using ultrashort lasers and can arbitrarily route light in 3-D. Finally, free-space systems using lenses can also relay many multicore and multimode beams through a single free-space device, such as a thin film filter or an optical isolator. These four technologies have enabled hero transmission experiments in the multimode, multicore, and multimode fiber.

[1]  A. Jesacher,et al.  Inverse design of gradient-index volume multimode converters. , 2021, Optics express.

[2]  A. Willner,et al.  Simultaneous turbulence mitigation and channel demultiplexing using a single multi-plane light convertor for a free-space optical link with two 100-Gbit/s OAM channels , 2021 .

[3]  A. Willner,et al.  Orbital angular momentum of light for communications , 2021, Applied Physics Reviews.

[4]  Benjamin J. Puttnam,et al.  Space-Division Multiplexing for Optical Fiber Communications , 2021 .

[5]  Mikael Mazur,et al.  Hermite-Gaussian mode multiplexer supporting 1035 modes , 2021, 2021 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  Demetri Psaltis,et al.  Machine learning with multimode fibers , 2021, 2021 Conference on Lasers and Electro-Optics (CLEO).

[7]  D. Psaltis,et al.  Scalable optical learning operator , 2020, Nature Computational Science.

[8]  J. C. Alvarado-Zacarias,et al.  Time reversed optical waves by arbitrary vector spatiotemporal field generation , 2020, Nature Communications.

[9]  Dirk Englund,et al.  Programmable photonic circuits , 2020, Nature.

[10]  K. Rottwitt,et al.  Modeling of MIMO Less Mode Division Multiplexed Systems , 2020, IEEE Photonics Technology Letters.

[11]  K. Rottwitt,et al.  MDM Transmission Using Air-Clad Photonic Lanterns , 2020, IEEE Photonics Technology Letters.

[12]  N. Fontaine,et al.  Spatial mode sorter coronagraphs , 2020, 2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[13]  N. Fontaine,et al.  High-dimensional quantum gates for azimuthal modes , 2020, 2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[14]  Benjamin J. Puttnam,et al.  Enabling Future Fiber Networks Using Integrated Ultrafast Laser-Written Multicore Fiber Fan-outs , 2020, 2020 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[15]  Takehiro Tsuritani,et al.  Ultra-High Capacity Optical Transmission over 10-Pbit/s Based on Optical Space Division Multiplexing Technologies , 2020, 2020 22nd International Conference on Transparent Optical Networks (ICTON).

[16]  D. Richardson,et al.  Multiport Fiber Optic Beam Splitters for Space Division Multiplexed (SDM) Systems , 2020, IEEE Photonics Technology Letters.

[17]  D. Richardson,et al.  Adiabatic higher-order mode microfibers based on a logarithmic index profile. , 2020, Optics express.

[18]  Zuyuan He,et al.  Ultra-Low-Loss Broadband All-Fiber Mode Selective Couplers for MIMO-Less MDM Transmission , 2020, Journal of Lightwave Technology.

[19]  G. Labroille,et al.  Fully reflective annular laser beam shaping for 1.03µm ultra-high throughput laser beam welding (Conference Presentation) , 2020 .

[20]  Naoya Wada,et al.  10.66 Peta-Bit/s Transmission over a 38-Core-Three-Mode Fiber , 2020, 2020 Optical Fiber Communications Conference and Exhibition (OFC).

[21]  D. Richardson,et al.  Compact micro-optic based components for hollow core fibers. , 2020, Optics express.

[22]  Robert Fickler,et al.  High-dimensional quantum gates using full-field spatial modes of photons , 2019, Optica.

[23]  Gustavo Lima,et al.  Quantum information processing with space-division multiplexing optical fibres , 2019, Communications Physics.

[24]  David J. Richardson,et al.  Multicore and multimode optical amplifiers for space division multiplexing , 2020 .

[25]  Jianzhao Li,et al.  Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging , 2019, International Journal of Extreme Manufacturing.

[26]  Pu Jian,et al.  Optimal Coherent Beam Combining Based on Multi-Plane Light Conversion for High Throughput Optical Feeder Links , 2019, 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS).

[27]  Naoya Wada,et al.  1.2 Pb/s Throughput Transmission Using a 160 $\mu$m Cladding, 4-Core, 3-Mode Fiber , 2019, Journal of Lightwave Technology.

[28]  David J. Richardson,et al.  Fully integrated optical isolators for space division multiplexed (SDM) transmission , 2019, APL Photonics.

[29]  Mario Ureña,et al.  Modeling optical fiber space division multiplexed quantum key distribution systems. , 2019, Optics express.

[30]  Nicolas K. Fontaine,et al.  Laguerre-Gaussian mode sorter , 2018, Nature Communications.

[31]  J. C. Alvarado-Zacarias,et al.  7-Core x 6-Mode photonic lantern mode multiplexer , 2019, 45th European Conference on Optical Communication (ECOC 2019).

[32]  Mikael Mazur,et al.  Digital turbulence compensation of free space optical link with multimode optical amplifier , 2019, 45th European Conference on Optical Communication (ECOC 2019).

[33]  Joseph M. Kahn,et al.  High-Spectral-Efficiency Mode-Multiplexed Transmission Over Graded-Index Multimode Fiber , 2018, 2018 European Conference on Optical Communication (ECOC).

[34]  J. C. Alvarado-Zacarias,et al.  Scaling photonic lanterns for space-division multiplexing , 2018, Scientific Reports.

[35]  Guifang Li,et al.  Demonstration of Stable 3×10 Gb/s Mode Group-multiplexed Transmission over a 20 km Few-mode Fiber , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[36]  Juhao Li,et al.  3×4×10-Gb/s MDM-WDM Transmission over 21-km OM3 MMF with OOK Modulation and Direct Detection , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[37]  Haoshuo Chen,et al.  Mode Selective Photonic Lantern with Graded Index Core , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[38]  Naoya Wada,et al.  159 Tbit/s C+L Band Transmission over 1045 km 3-Mode Graded-Index Few-Mode Fiber , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[39]  Pu Jian,et al.  Fabrication and Characterization of a Mode-selective 45-Mode Spatial Multiplexer based on Multi-Plane Light Conversion , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[40]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[41]  Simone Atzeni,et al.  Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. , 2018, Optics express.

[42]  T. Birks,et al.  Endlessly adiabatic fiber with a logarithmic refractive index distribution , 2017 .

[43]  Jan Siegel,et al.  Bespoke photonic devices using ultrafast laser driven ion migration in glasses , 2017 .

[44]  Haoshuo Chen,et al.  Design of High Order Mode-Multiplexers using Multiplane Light Conversion , 2017, 2017 European Conference on Optical Communication (ECOC).

[45]  Yusuke Sasaki,et al.  Monolithic mode-selective few-mode multicore fiber multiplexers , 2017, Scientific Reports.

[46]  Idelfonso Tafur Monroy,et al.  Characterization of a Fiber-Coupled 36-Core 3-Mode Photonic Lantern Spatial Multiplexer , 2017 .

[47]  C M Okonkwo,et al.  All-fiber few-mode multicore photonic lantern mode multiplexer. , 2017, Optics express.

[48]  N. Fontaine,et al.  Multi-plane light conversion with low plane count , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[49]  S. Leon-Saval,et al.  Ultrafast laser inscribed mode-group-selective 6-mode photonic lanterns for mode-division multiplexing , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[50]  Pu Jian,et al.  Broadband, mode-selective 15-mode multiplexer based on multi-plane light conversion , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[51]  Yusuke Sasaki,et al.  Few-mode multicore fibers for long-haul transmission line , 2017 .

[52]  Nicolas K. Fontaine,et al.  Photonic lantern as mode multiplexer for multimode optical communications , 2017 .

[53]  Kazuhiko Aikawa,et al.  Fusion splice techniques for multicore fibers , 2017 .

[54]  David J Geisler,et al.  Multi-aperture digital coherent combining for free-space optical communication receivers. , 2016, Optics express.

[55]  Haoshuo Chen,et al.  Wavelength selective switch with optimal steering element utilization , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[56]  Y. Yue,et al.  Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications , 2016 .

[57]  Robert J. Harris,et al.  Development of integrated mode reformatting components for diffraction-limited spectroscopy. , 2015, Optics letters.

[58]  I. Morita,et al.  2.05 Peta-bit/s super-nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band , 2015, 2015 European Conference on Optical Communication (ECOC).

[59]  B. Guan,et al.  15-Spatial-mode photonic lanterns based on ultrafast laser inscription , 2015, 2015 European Conference on Optical Communication (ECOC).

[60]  Simon Gross,et al.  Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications , 2015 .

[61]  A. M. Velazquez-Benitez,et al.  10-Mode mode-multiplexed transmission over 125-km single-span multimode fiber , 2015, 2015 European Conference on Optical Communication (ECOC).

[62]  Kevin P. Chen,et al.  Flexible photonic components in glass substrates. , 2015, Optics express.

[63]  J. C. Alvarado,et al.  Six mode selective fiber optic spatial multiplexer. , 2015, Optics letters.

[64]  Haoshuo Chen,et al.  30×30 MIMO transmission over 15 spatial modes , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[65]  S. J. B. Yoo,et al.  Mode-group-selective photonic lantern based on integrated 3D devices fabricated by ultrafast laser inscription , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[66]  Nicolas K. Fontaine,et al.  Design Constraints of Photonic-Lantern Spatial Multiplexer Based on Laser-Inscribed 3-D Waveguide Technology , 2015, Journal of Lightwave Technology.

[67]  Naresh Chand,et al.  Time-division-multiplexed few-mode passive optical network. , 2015, Optics express.

[68]  Guifang Li,et al.  Mode-group-selective photonic lantern using graded-index multimode fibers , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[69]  N. Riesen,et al.  Three-dimensional C+L band and EDFA pump band integrated tapered mode couplers , 2015 .

[70]  Guifang Li,et al.  Space-division multiplexing: the next frontier in optical communication , 2014 .

[71]  Nicolas Riesen,et al.  Femtosecond direct-written integrated mode couplers. , 2014, Optics express.

[72]  F. Huijskens,et al.  Ultra-high-density spatial division multiplexing with a few-mode multicore fibre , 2014, Nature Photonics.

[73]  Nicolas Riesen,et al.  Three‐dimensional ultra‐broadband integrated tapered mode multiplexers , 2014 .

[74]  Raman Kashyap,et al.  Making smart phones smarter with photonics. , 2014, Optics express.

[75]  R. Thomson,et al.  The photonic lantern , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[76]  N. Treps,et al.  Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion , 2014, 2014 IEEE Photonics Conference.

[77]  A. Kar,et al.  57 channel (19×3) spatial multiplexer fabricated using direct laser inscription , 2014, OFC 2014.

[78]  S. Chandrasekhar,et al.  Photonic-lantern-based mode multiplexers for few-mode-fiber transmission , 2014, OFC 2014.

[79]  J. R. Salazar-Gil,et al.  Mode-selective photonic lanterns for space-division multiplexing. , 2014, Optics express.

[80]  T A Birks,et al.  Adiabatically-tapered fiber mode multiplexers. , 2014, Optics express.

[81]  Nemanja Jovanovic,et al.  Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm , 2014 .

[82]  Nemanja Jovanovic,et al.  Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition. , 2013, Optics express.

[83]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[84]  S. Olaizola,et al.  Low bend loss waveguides enable compact, efficient 3D photonic chips. , 2013, Optics express.

[85]  Nicolas Riesen,et al.  Ultra-Broadband Tapered Mode-Selective Couplers for Few-Mode Optical Fiber Networks , 2012, IEEE Photonics Technology Letters.

[86]  Eric Mazur,et al.  Femtosecond Laser Micromachining , 2013 .

[87]  Roland Ryf,et al.  Geometric requirements for photonic lanterns in space division multiplexing. , 2012, Optics express.

[88]  Moonseok Kim,et al.  Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. , 2012, Physical review letters.

[89]  Peter R. Herman,et al.  Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica. , 2012, Optics express.

[90]  Peter J. Winzer,et al.  Optical Networking Beyond WDM , 2012, IEEE Photonics Journal.

[91]  M. Ireland,et al.  Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide , 2012, 1207.0153.

[92]  J. Cruz,et al.  "Photonic lantern" spectral filters in multi-core Fiber. , 2012, Optics express.

[93]  T A Birks,et al.  Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. , 2012, Optics letters.

[94]  N. K. Fontaine,et al.  Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits , 2012, OFC/NFOEC.

[95]  S. Randel,et al.  Space-division multiplexed transmission over 4200-km 3-core microstructured fiber , 2012, OFC/NFOEC.

[96]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[97]  Tomáš Čižmár,et al.  Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. , 2011, Optics express.

[98]  Peter J. Winzer,et al.  MIMO capacities and outage probabilities in spatially multiplexed optical transport systems. , 2011, Optics express.

[99]  T A Birks,et al.  Ultrafast laser inscription of an integrated photonic lantern. , 2011, Optics express.

[100]  A. Gnauck,et al.  Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[101]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[102]  Alexander Argyros,et al.  Photonic lanterns: a study of light propagation in multimode to single-mode converters. , 2010, Optics express.

[103]  Joss Bland-Hawthorn,et al.  Efficient multi-mode to single-mode coupling in a photonic lantern. , 2009, Optics express.

[104]  A. Fender,et al.  Ultrafast laser inscription of a three dimensional fan-out device for multicore fiber coupling applications , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[105]  T. Hashimoto,et al.  New Optical Waveguide Design Based on Wavefront Matching Method , 2007, Journal of Lightwave Technology.

[106]  T A Birks,et al.  Wavelength-independent all-fiber mode converters. , 2007, Optics letters.

[107]  R. Ryf,et al.  Micromechanical optical crossconnect with 4-F relay imaging optics , 2004, IEEE Photonics Technology Letters.

[108]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[109]  François Ladouceur,et al.  Multiport single-mode fibre splitters , 1990 .