Towards backward perturbation bounds for approximate dual Krylov subspaces
暂无分享,去创建一个
Yimin Wei | Lu Zhang | Sitao Ling | Zhigang Jia | Gang Wu | Zhigang Jia | Gang Wu | Yi-min Wei | Sitao Ling | Lu Zhang | Yimin Wei
[1] Zdenek Strakos,et al. On Efficient Numerical Approximation of the Bilinear Form c*A-1b , 2011, SIAM J. Sci. Comput..
[2] W. Kahan,et al. Residual Bounds on Approximate Eigensystems of Nonnormal Matrices , 1982 .
[3] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[4] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[5] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[6] Javad Mohammadpour,et al. Efficient modeling and control of large-scale systems , 2010 .
[7] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[8] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[9] Jack Dongarra,et al. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .
[10] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[11] G. W. Stewart,et al. Matrix algorithms , 1998 .
[12] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[13] Serkan Gugercin,et al. Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .
[14] G. Stewart. Backward error bounds for approximate Krylov subspaces , 2002 .
[15] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[16] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[17] G. Stewart. Matrix Algorithms, Volume II: Eigensystems , 2001 .
[18] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[19] Zhi-Hao Cao. On the QMR approach for iterative methods including coupled three-term recurrences for solving nonsymmetric linear systems , 1998 .
[20] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[21] Zdenek Strakos,et al. Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.
[22] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[23] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[24] Steffen Börm,et al. Numerical Methods for Eigenvalue Problems , 2012 .
[25] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .
[26] B. Parlett,et al. Semi-duality in the two-sided lanczos algorithm , 1993 .
[27] Zhaojun Bai,et al. Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem , 1994 .
[28] Gene H. Golub,et al. Matrix computations , 1983 .