Dynamic finite element model validation of an assembled aero-engine casing

Structural dynamic model updating and validation of an aero-engine casing is critical to the design and development of an aircraft engine. It helps to identify the dynamic characteristics and reduce the response of the aero-engine. The modelling and parameter identification of joint are extremely difficult and important in structural dynamic analysis of the assembled aero-engine casing. In this paper, dynamic model validation technique was applied to update and validate the finite element model of an assembled aero-engine casing. First, modal test of individual casings and the assembled casing was performed by using the traditional acceleration sensors and a hammer. The modal frequencies and mode shapes were obtained by modal analysis tools. Second, the Inverse Eigen-sensitivity Method was used to correct frequency errors and MAC values of correlated mode pairs in the individual components to obtain validated models. Last, the bolt joints of two aero-engine casings were modelled by thin layer of shell elements. The material parameters or element properties of the thin-layer contact elements were updated to obtain reliable connection parameters. The results show that the errors of natural frequencies between the validated FE model of an assembled aero-engine casing and test data are within 7%, and the MAC values of main modes are above 70%, which can verify the feasibility and effectiveness of this approach.