On the positive semi-definite property of similarity matrices

Abstract The notion of similarity is a fundamental concept in different scientific fields. Similarity measures aim at quantifying the extent to which objects resemble each other. This paper is concerned with the analysis of the properties of similarity matrices. More specifically, we focus on their positive semi-definite property, which is important to derive useful distances between data sets. Based on some general results, we show that most of classical similarity matrices have this property.

[1]  Anne-Laure Jousselme,et al.  A proof for the positive definiteness of the Jaccard index matrix , 2013, Int. J. Approx. Reason..

[2]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[3]  C. Tappert,et al.  A Survey of Binary Similarity and Distance Measures , 2010 .

[4]  Matthijs J. Warrens,et al.  Bounds of Resemblance Measures for Binary (Presence/Absence) Variables , 2008, J. Classif..

[5]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[6]  Yunsong Guo,et al.  Metric Learning: A Support Vector Approach , 2008, ECML/PKDD.

[7]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[8]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[9]  Willem J. Heiser,et al.  Similarity coefficients for binary data : properties of coefficients, coefficient matrices, multi-way metrics and multivariate coefficients , 2003 .

[10]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[11]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[12]  Biju R. Mohan,et al.  An improved K-means algorithm using modified cosine distance measure for document clustering using Mahout with Hadoop , 2014, 2014 9th International Conference on Industrial and Information Systems (ICIIS).

[13]  Zhou Wang,et al.  Geodesics of the Structural Similarity index , 2012, Appl. Math. Lett..

[14]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[15]  Isabelle Bloch,et al.  Robust similarity between hypergraphs based on valuations and mathematical morphology operators , 2015, Discret. Appl. Math..

[16]  Alexander J. Smola,et al.  Learning with non-positive kernels , 2004, ICML.

[17]  Bin Ma,et al.  On the similarity metric and the distance metric , 2009, Theor. Comput. Sci..

[18]  M. Santos Tomás,et al.  Pseudometrics from three-positive semidefinite similarities , 2006, Fuzzy Sets Syst..

[19]  R. Bhatia Positive Definite Matrices , 2007 .

[20]  Richard S. Zemel,et al.  Stochastic k-Neighborhood Selection for Supervised and Unsupervised Learning , 2013, ICML.

[21]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[22]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[23]  Gary Benson,et al.  LCSk: A refined similarity measure , 2016, Theor. Comput. Sci..

[24]  Hans-Peter Kriegel,et al.  Efficient User-Adaptable Similarity Search in Large Multimedia Databases , 1997, VLDB.

[25]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[26]  Ajay Rana,et al.  K-means with Three different Distance Metrics , 2013 .

[27]  Isabelle Bloch,et al.  Mathematical morphology on hypergraphs, application to similarity and positive kernel , 2013, Comput. Vis. Image Underst..

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[29]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[32]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[33]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[34]  J. Gower,et al.  Metric and Euclidean properties of dissimilarity coefficients , 1986 .

[35]  A. Tversky Features of Similarity , 1977 .