Fresnel transform and sampling theorem

Abstract A sampling theorem for functions whose Fresnel transform has finite support is established. Its possible applications to optics are outlined.

[1]  P. M. Duffieux L'intégrale de Fourier et ses applications à l'optique , 1946 .

[2]  H. Stark Sampling theorems in polar coordinates , 1979 .

[3]  D. Gabor IV Light and Information , 1961 .

[4]  J. Goodman Introduction to Fourier optics , 1969 .

[5]  William H. Southwell,et al.  Validity of the Fresnel approximation in the near field , 1981 .

[6]  B. Frieden Image Evaluation by Use of the Sampling Theorem , 1966 .

[7]  K. Gamo,et al.  Photoconductivity of Copper Phthalocyanine Single Crystals , 1968 .

[8]  R. Barakat Note on a sampling expansion posed by O'Neill and Walther , 1977 .

[9]  Joseph W. Goodman,et al.  Reconstructions of images of partially coherent objects from samples of mutual intensity , 1977 .

[10]  R. Barakat Application of the Sampling Theorem to Optical Diffraction Theory , 1964 .

[11]  E. A. Sziklas,et al.  Mode calculations in unstable resonators with flowing saturable gain. 2: Fast Fourier transform method. , 1975, Applied optics.

[12]  G. D. Francia Resolving Power and Information , 1955 .

[13]  Douglas A. Christensen,et al.  Efficient FFT Computation of Plano-plano Interferometer Modes for a Wide Range of Fresnel Numbers , 1980 .

[14]  H. Kramer,et al.  A Generalized Sampling Theorem , 1959 .

[15]  A. J. Jerri The Shannon sampling theorem—Its various extensions and applications: A tutorial review , 1977, Proceedings of the IEEE.

[16]  Mj Martin Bastiaans A generalized sampling theorem with application to computer-generated transparencies , 1977 .

[17]  Robert J. Marks Sampling theory for linear integral transforms. , 1981 .