Bi-dimensional knapsack problems with one soft constraint

In this paper, we consider bi-dimensional knapsack problems with a soft constraint, i.e., a constraint for which the right-hand side is not precisely fixed or uncertain. We reformulate these problems as bi-objective knapsack problems, where the soft constraint is relaxed and interpreted as an additional objective function. In this way, a sensitivity analysis for the bi-dimensional knapsack problem can be performed: The trade-off between constraint satisfaction, on the one hand, and the original objective value, on the other hand, can be analyzed. It is shown that a dynamic programming based solution approach for the bi-objective knapsack problem can be adapted in such a way that a representation of the nondominated set is obtained at moderate extra cost. In this context, we are particularly interested in representations of that part of the nondominated set that is in a certain sense close to the constrained optimum in the objective space. We discuss strategies for bound computations and for handling negative cost coefficients, which occur through the transformation. Numerical results comparing the bi-dimensional and bi-objective approaches are presented. HighlightsBi-dimensional knapsack problems with one soft constraint are considered.A bi-objective solution approach for providing trade-off information is proposed.Introduction of bound computations based on negative coefficients.A predefined region of interest focuses the search on interesting solutions.

[1]  Kathrin Klamroth,et al.  Constrained optimization using multiple objective programming , 2007, J. Glob. Optim..

[2]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[3]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[4]  Kathrin Klamroth,et al.  On the representation of the search region in multi-objective optimization , 2015, Eur. J. Oper. Res..

[5]  G. Nemhauser,et al.  Discrete Dynamic Programming and Capital Allocation , 1969 .

[6]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[7]  Hasan Pirkul,et al.  Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality , 1985, Math. Program..

[8]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[9]  Charles R. Blair Sensitivity Analysis for Knapsack Problems: A Negative Result , 1998, Discret. Appl. Math..

[10]  Sebastian Tobias Henn Weight-Constrained Minimum Spanning Tree Problem , 2007 .

[11]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[12]  Philippe Michelon,et al.  A multi-level search strategy for the 0-1 Multidimensional Knapsack Problem , 2010, Discret. Appl. Math..

[13]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Maria Grazia Speranza,et al.  CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem , 2012, INFORMS J. Comput..

[16]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[17]  Eugene Levner,et al.  Computational Complexity of Approximation Algorithms for Combinatorial Problems , 1979, MFCS.

[18]  Jochen Gorski Multiple Objective Optimization and Implications for Single Objective Optimization , 2018 .

[19]  René Beier,et al.  Random knapsack in expected polynomial time , 2003, STOC '03.

[20]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[21]  PuchingerJakob,et al.  The Multidimensional Knapsack Problem , 2010 .

[22]  H. Martin Weingartner,et al.  Methods for the Solution of the Multidimensional 0/1 Knapsack Problem , 1967, Operational Research.

[23]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[24]  Paolo Toth,et al.  An Exact Algorithm for the Two-Constraint 0 - 1 Knapsack Problem , 2003, Oper. Res..

[25]  Gerhard J. Woeginger Sensitivity Analysis for Knapsack Problems: Another Negative Result , 1999, Discret. Appl. Math..

[26]  H. Martin Weingartner,et al.  Method for the Solution of the Multi-Dimensional 0/1 Knapsack Problem , 2015 .

[27]  A. S. Manne,et al.  On the Solution of Discrete Programming Problems , 1956 .

[28]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[29]  Luís Paquete,et al.  Algorithmic improvements on dynamic programming for the bi-objective {0,1} knapsack problem , 2013, Comput. Optim. Appl..

[30]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[31]  Leonardo Lozano,et al.  On an exact method for the constrained shortest path problem , 2013, Comput. Oper. Res..

[32]  Christine Solnon,et al.  Ant algorithm for the multidimensional knapsack problem , 2004 .