Enhanced fluorescent intensity of magnetic-fluorescent bifunctional PLGA microspheres based on Janus electrospraying for bioapplication

[1]  Xufeng Niu,et al.  Study on the formation and properties of red blood cell-like Fe3O4/TbLa3(Bim)12/PLGA composite particles , 2018, RSC advances.

[2]  Jitong Wang,et al.  Engineering the outermost surface of mesoporous carbon beads towards the broad-spectrum blood-cleansing application , 2018 .

[3]  J. Yu,et al.  Red and green colors emitting spherical-shaped calcium molybdate nanophosphors for enhanced latent fingerprint detection , 2017, Scientific Reports.

[4]  G. Dong,et al.  Regulating Mid-infrared to Visible Fluorescence in Monodispersed Er3+-doped La2O2S (La2O2SO4) Nanocrystals by Phase Modulation , 2016, Scientific Reports.

[5]  Xufeng Niu,et al.  Electrospraying magnetic-fluorescent bifunctional Janus PLGA microspheres with dual rare earth ions fluorescent-labeling drugs , 2016 .

[6]  Y. Xuan,et al.  Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging. , 2015, Dalton transactions.

[7]  Genyi Zhang,et al.  Fluorescent magnetic bead-based mast cell biosensor for electrochemical detection of allergens in foodstuffs. , 2015, Biosensors & bioelectronics.

[8]  J. Lahann,et al.  Dual-stimuli-responsive microparticles. , 2015, ACS applied materials & interfaces.

[9]  Stefan Tenzer,et al.  Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. , 2015, Biomacromolecules.

[10]  M. Salami‐Kalajahi,et al.  Multilayer fluorescent magnetic nanoparticles with dual thermoresponsive and pH-sensitive polymeric nanolayers as anti-cancer drug carriers , 2015 .

[11]  Q. Ma,et al.  Flexible Janus Nanofiber to Help Achieve Simultaneous Enhanced Magnetism-Upconversion Luminescence Bifunction , 2015, IEEE Transactions on Nanotechnology.

[12]  Ruhong Zhou,et al.  Towards understanding of nanoparticle–protein corona , 2015, Archives of Toxicology.

[13]  Samir Mitragotri,et al.  An overview of clinical and commercial impact of drug delivery systems. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[14]  J. Lahann,et al.  Recent progress with multicompartmental nanoparticles , 2014 .

[15]  Jin Sun,et al.  Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[16]  J. Lahann,et al.  Multimodal delivery of irinotecan from microparticles with two distinct compartments. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[17]  M. Bayindir,et al.  Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. , 2013, Journal of materials chemistry. B.

[18]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[19]  J. Lahann,et al.  Differentially degradable janus particles for controlled release applications. , 2012, Macromolecular rapid communications.

[20]  V. Préat,et al.  PLGA-based nanoparticles: an overview of biomedical applications. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[21]  G. Yin Preparation and Characterization of Bifunctional Fluorescent Magnetic Dendrimer Microspheres , 2012 .

[22]  P. Padmanabhan,et al.  Bimodal magnetic–fluorescent probes for bioimaging , 2011, Microscopy research and technique.

[23]  Bridgette M Budhlall,et al.  Pickering emulsion as a template to synthesize Janus colloids with anisotropy in the surface potential. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[24]  Shu Yang,et al.  Patchy and multiregion janus particles with tunable optical properties. , 2010, Nano letters.

[25]  M. Ersoz,et al.  Fabrication of novel anisotropic magnetic microparticles , 2009 .

[26]  Robert Langer,et al.  Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. , 2009, Biomaterials.

[27]  Michael Newton,et al.  Progess in superhydrophobic surface development. , 2008, Soft matter.

[28]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.

[29]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[30]  Zegers R.G.T.,et al.  420MeVでの( 3 He,t)反応を通した弱い遷移強度導出 , 2007 .

[31]  Robert F Shepherd,et al.  Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[32]  B. Persson,et al.  Influence of surface roughness on superhydrophobicity. , 2006, Physical review letters.

[33]  Joerg Lahann,et al.  Biphasic Janus particles with nanoscale anisotropy , 2005, Nature materials.

[34]  S. Glotzer Some Assembly Required , 2004, Science.

[35]  L Li,et al.  Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes. , 2001, Biomaterials.

[36]  A. Underhill,et al.  Studies on the mixed valence complexes Cs[PtBr3(NO2)(NH3)] and Cs[PtI3(NO2)(NH3)] , 1980 .

[37]  E. Okafor The metal chelates of heterocyclic β-diketones and their derivatives—I: Synthesis of some new tris rare earth chelates of 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 and their UV, IR and NMR spectral studies , 1980 .

[38]  L. J. Bellamy Amines and Imines , 1975 .

[39]  L. J. Bellamy The infra-red spectra of complex molecules , 1962 .

[40]  D. L. Dexter,et al.  Theory of Concentration Quenching in Inorganic Phosphors , 1954 .