Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems

The state-of-the art proof of a global inf-sup condition on mixed finite element schemes does not allow for an analysis of truly indefinite, second-order linear elliptic PDEs. This paper, therefore, first analyses a nonconforming finite element discretization which converges owing to some a priori$$L^2$$L2 error estimates even for reduced regularity on non-convex polygonal domains. An equivalence result of that nonconforming finite element scheme to the mixed finite element method (MFEM) leads to the well-posedness of the discrete solution and to a priori error estimates for the MFEM. The explicit residual-based a posteriori error analysis allows some reliable and efficient error control and motivates some adaptive discretization which improves the empirical convergence rates in three computational benchmarks.

[1]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[2]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[3]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[4]  Jinru Chen,et al.  Convergence and domain decomposition algorithm for nonconforming and mixed methods for nonselfadjoint and indefinite problems , 1999 .

[5]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[6]  Junping Wang,et al.  Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions , 1996, Math. Comput..

[7]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[8]  Jun Zou,et al.  Some Observations on Generalized Saddle-Point Problems , 2003, SIAM J. Matrix Anal. Appl..

[9]  Shipeng Mao,et al.  On the error bounds of nonconforming finite elements , 2010 .

[10]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[11]  C. Bahriawati,et al.  Three Matlab Implementations of the Lowest-order Raviart-Thomas Mfem with a Posteriori Error Control , 2005 .

[12]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[13]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[14]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[15]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..

[16]  Ronald H. W. Hoppe,et al.  Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems , 2010, Numerische Mathematik.

[17]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[18]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .