On the Abramov approach for the approximation of whispering gallery modes in prolate spheroids

Abstract In this paper, we present the Abramov approach for the numerical simulation of the whispering gallery modes in prolate spheroids. The main idea of this approach is the Newton–Raphson technique combined with the quasi-time marching. In the first step, a solution of a simpler problem, as an initial guess for the Newton–Raphson iterations, is provided. Then, step-by-step, this simpler problem is converted into the original problem, while the quasi-time parameter τ runs from τ = 0 to τ = 1 . While following the involved imaginary path two numerical approaches are realized, the first is based on the Prufer angle technique, the second on high order finite difference schemes.

[1]  Lu Cai,et al.  Overview of the coupling methods used in whispering gallery mode resonator systems for sensing , 2020 .

[2]  Pierluigi Amodio,et al.  A finite differences MATLAB code for the numerical solution of second order singular perturbation problems , 2012, J. Comput. Appl. Math..

[3]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[4]  L. A. Vaĭnshteĭn,et al.  Open resonators and open waveguides , 1969 .

[5]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part II: applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  A. Matsko,et al.  Optical resonators with whispering-gallery modes-part I: basics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  A. Matsko,et al.  Review of Applications of Whispering-Gallery Mode Resonators in Photonics and Nonlinear Optics , 2005 .

[8]  Whispering-Gallery Mode Lasing in a Floating GaN Microdisk with a Vertical Slit , 2020, Scientific Reports.

[9]  Pierluigi Amodio,et al.  Numerical Strategies for Solving Multiparameter Spectral Problems , 2019, NUMTA.

[10]  Pierluigi Amodio,et al.  A Stepsize Variation Strategy for the Solution of Regular Sturm‐Liouville Problems , 2011 .

[11]  T. Levitina,et al.  Evaluation of Lame´ angular wave functions by solving auxiliary differential equations: prf , 1990 .

[12]  P. Binding,et al.  Multiparameter Sturm-Liouville problems with eigenparameter dependent boundary conditions , 2001 .

[13]  B. Sleeman Multiparameter spectral theory in Hilbert space , 1978 .

[14]  Vladimir S. Ilchenko,et al.  High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers , 1994 .

[15]  A. A. Abramov,et al.  A method for solving self-adjoint multiparameter spectral problems for weakly coupled sets of ordinary differential equations , 1997 .

[16]  N. B. Konyukhova,et al.  Evaluation of prolate spheroidal function by solving the corresponding differential equations , 1984 .

[17]  T. Levitina A numerical solution to some three-parameter spectral problems , 1999 .

[19]  Hans Volkmer,et al.  Multiparameter eigenvalue problems and expansion theorems , 1988 .

[20]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[21]  Sabrina Eberhart,et al.  Methods Of Theoretical Physics , 2016 .

[22]  Pierluigi Amodio,et al.  A Matrix Method for the Solution of Sturm-Liouville Problems 1 , 2011 .

[23]  Ewa Weinmüller,et al.  On the calculation of the finite Hankel transform eigenfunctions , 2013 .

[24]  B. Sleeman,et al.  Multiparameter spectral theory and separation of variables , 2008 .

[25]  Pierluigi Amodio,et al.  Variable-step finite difference schemes for the solution of Sturm-Liouville problems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[26]  Su Xu,et al.  Laser printing controllable photonic-molecule microcavities , 2020 .

[27]  Ewa Weinmüller,et al.  Numerical simulation of the whispering gallery modes in prolate spheroids , 2014, Comput. Phys. Commun..