Pressure and Temperature Influence on the Desorption Pathway of the LiBH 4-MgH 2 Composite System

Institute of Materials Research, Materials Technology, GKSS-Research Centre Geesthacht, D-21502 Geesthacht, Germany, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, UniVersity of Aarhus, DK-8000, Denmark, Département de Chimie Physique, UniVersité de GenèVe, 30, quai E. Ansermet, CH1211 GeneVa 4, Switzerland, and Swiss-Norwegian Beamlines at ESRF, BP-220, 38043 Grenoble, France

[1]  F. Besenbacher,et al.  A reversible nanoconfined chemical reaction. , 2010, ACS nano.

[2]  Thomas Klassen,et al.  Role of additives in LiBH4-MgH2 reactive hydride composites for sorption kinetics , 2010 .

[3]  Young-Su Lee,et al.  Effect of hydrogen back pressure on dehydrogenation behavior of LiBH4-based reactive hydride composites , 2010 .

[4]  David M. Grant,et al.  High capacity multicomponent hydrogen storage materials: Investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH4–MgH2 , 2009 .

[5]  A. Remhof,et al.  Low-temperature synthesis of LiBH4 by gas-solid reaction. , 2009, Chemistry.

[6]  E. Welter,et al.  On the chemical state and distribution of Zr- and V-based additives in reactive hydride composites , 2009, Nanotechnology.

[7]  Z. Yang,et al.  Direct observation of ion exchange in mechanically activated LiH+MgB2 system using ultrahigh field nuclear magnetic resonance spectroscopy , 2009 .

[8]  H. Hagemann,et al.  Insight into Mg(BH4)2 with synchrotron X-ray diffraction: Structure revision, crystal chemistry, and anomalous thermal expansion , 2009 .

[9]  Robert C. Bowman,et al.  NMR Confirmation for Formation of [B12H12]2- Complexes during Hydrogen Desorption from Metal Borohydrides , 2008 .

[10]  A. Züttel,et al.  Magnesium borohydride: A new hydrogen storage material , 2008 .

[11]  A. Remhof,et al.  Stability and reversibility of LiBH4. , 2008, The journal of physical chemistry. B.

[12]  Takayuki Ichikawa,et al.  Thermal analysis on the Li–Mg–B–H systems , 2007 .

[13]  M. Dornheim,et al.  Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides , 2007 .

[14]  Frederick E. Pinkerton,et al.  Phase boundaries and reversibility of LiBH4/MgH2 hydrogen storage material , 2007 .

[15]  H. Hagemann,et al.  Magnesium borohydride: synthesis and crystal structure. , 2007, Angewandte Chemie.

[16]  G. S. Walker,et al.  A new dehydrogenation mechanism for reversible multicomponent borohydride systems--The role of Li-Mg alloys. , 2006, Chemical communications.

[17]  A. Züttel,et al.  Experimental studies on intermediate compound of LiBH4 , 2006 .

[18]  N. Ohba,et al.  First-principles study on the stability of intermediate compounds of LiBH(4) , 2006, cond-mat/0606228.

[19]  J. Shim,et al.  Thermal destabilization of binary and complex metal hydrides by chemical reaction: A thermodynamic analysis , 2006 .

[20]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[21]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[22]  G. Chryssikos,et al.  Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure , 1987 .

[23]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 , 1968 .

[24]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and copper , 1967 .

[25]  G. Libowitz,et al.  The System Zirconium–Nickel and Hydrogen , 1958 .