Neutral Depletion in a Collisionless Plasma

Neutral depletion can significantly affect the steady state of low-temperature plasmas. Recent theoretical analyses predicted unexpected effects of neutral depletion in both collisional and collisionless regimes. In this paper, we address the effects of neutral depletion on the steady state of a collisionless plasma generated in a collisionless neutral gas. The neutrals and the plasma are coupled only through volume ionization and wall recombination. For a closed system with zero mass flow, the density profiles of both plasma and neutrals are found, and values for the rate of depletion at asymptotic limits are derived. It is shown that the pressure of the collisionless neutral gas is maximal where the density is minimal. This is in contrast to the case in which the neutral gas is thermalized. For an open system of a nonzero mass flow, analytical expressions are derived for the profiles of the plasma and the neutral flows. Considering such a configuration for a plasma thruster, we calculate the expected thrust, propellant utilization, specific impulse, and efficiency. The energy cost for ionization and backwall energy losses are shown to significantly reduce the efficiency.

[1]  R. Boswell,et al.  Large volume, high density rf inductively coupled plasma , 1987 .

[2]  Roger H. Taylor,et al.  Transition from Bohm to classical diffusion due to edge rotation of a cylindrical plasma , 2007 .

[3]  P. Chabert,et al.  Enhanced plasma transport due to neutral depletion. , 2005, Physical review letters.

[4]  F.F. Chen,et al.  Permanent Magnet Helicon Source for Ion Propulsion , 2008, IEEE Transactions on Plasma Science.

[5]  A. Fruchtman,et al.  Two-dimensional equilibrium of a low temperature magnetized plasma , 2005 .

[6]  R. Boswell,et al.  Model for relaxation oscillations in a helicon discharge , 1999 .

[7]  P. Stangeby,et al.  Current limitation in mercury vapour discharges II. Experiment , 1973 .

[8]  E. Scime,et al.  Neutral density profiles in argon helicon plasmas , 2007 .

[9]  Francis F. Chen,et al.  Discharge equilibrium of a helicon plasma , 1996 .

[10]  W. Manheimer,et al.  Plasma acceleration by area expansion , 2001 .

[11]  P. Stangeby,et al.  Current limitation in mercury vapour discharges. I. Theory , 1971 .

[12]  R. Franklin Plasma phenomena in gas discharges , 1976 .

[13]  Francesco Angrilli,et al.  Numerical simulation of the Helicon Double Layer Thruster concept , 2007 .

[14]  Kimiya Komurasaki,et al.  Channel length and thruster performance of Hall thrusters , 1996 .

[15]  D. Graves,et al.  Neutral gas temperatures measured within a high-density, inductively coupled plasma abatement device , 2002 .

[16]  A. Fruchtman Energizing and depletion of neutrals by a collisional plasma , 2008 .

[17]  R. Franklin,et al.  THE POSITIVE COLUMN IN A MAGNETIC FIELD AT LOW PRESSURES: THE TRANSITION FROM FREE-FALL TO AMBIPOLAR CONDITIONS. , 1966 .

[18]  A. Fruchtman,et al.  Electric field in a double layer and the imparted momentum. , 2006, Physical review letters.

[19]  M. Krämer,et al.  Spectroscopic investigations of electron heating in a high-density helicon discharge , 2007 .

[20]  N. Hershkowitz Review of recent laboratory double layer experiments , 1985 .

[21]  C. Watts,et al.  Alfvén wave propagation in a partially ionized plasma , 2004 .

[22]  Valery Godyak,et al.  Soviet radio frequency discharge research , 1986 .

[23]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[24]  M. Shimada,et al.  Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma , 2007 .

[25]  L. Liard,et al.  Steady-state isothermal bounded plasma with neutral dynamics , 2007 .

[26]  E. Scime,et al.  Neutral argon density profile determination by comparison of spectroscopic measurements and a collisional-radiative model (invited) , 2006 .

[27]  H. Valentini Theoretical description of gas discharges containing excited atoms at low pressures , 1984 .

[28]  Plasma acceleration from radio-frequency discharge in dielectric capillary , 2006 .

[29]  L. Liard,et al.  Plasma transport under neutral gas depletion conditions , 2007 .

[30]  N. Hershkowitz,et al.  Neutral pumping in a helicon discharge , 1998 .

[31]  A. Aanesland,et al.  Direct measurements of neutral density depletion by two-photon absorption laser-induced fluorescence spectroscopy , 2007 .

[32]  G. Tynan,et al.  Measurement of radial neutral pressure and plasma density profiles in various plasma conditions in large-area high-density plasma sources , 2000 .

[33]  A. Cavaliere,et al.  The low pressure discharge in the strong ionization regime , 1964 .

[34]  R. Boswell,et al.  Intense on-axis plasma production and associated relaxation oscillations in a large volume helicon source , 1999 .

[35]  M. Guelman,et al.  Propellant Utilization in Hall Thrusters , 1996 .

[36]  J. Booth,et al.  Gas temperature gradients in a CF4 inductive discharge , 2002 .

[37]  U. Czarnetzki,et al.  Neutral gas depletion mechanisms in dense low-temperature argon plasmas , 2008 .

[38]  Robert M. Winglee,et al.  Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster , 2007 .

[39]  F. C. Díaz The VASIMR Rocket. , 2000 .

[40]  N. Sternberg,et al.  Magnetic field effects on gas discharge plasmas , 2006 .

[41]  G. Appelbaum,et al.  Parametric studies of the Hall current plasma thruster , 1998 .