Noisy blind source separation by nonlinear autocorrelation

When source signals have nonlinear autocorrelation temporal structure, nonlinear autocorrelation has been used as a statistical property for solving blind source separation (BSS) problem (Z. Shi, Z. Jiang, F. Zhou, A fixed-point algorithm for blind source separation with nonlinear autocorrelation, Journal of Computational and Applied Mathematics (2009)). The application of this method is, however, limited to noise-free mixtures, which does not consider the noisy case. Therefore in this paper, we consider the blind separation of the noisy model using the temporal characteristics of sources. An objective function, which combining Gaussian moments to nonlinear autocorrelation is proposed. Maximizing this objective function, we present a blind source separation algorithm for noisy mixtures. Simulations show the better performance of the proposed algorithm.

[1]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[2]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[3]  Changshui Zhang,et al.  Gaussian moments for noisy complexity pursuit , 2006, Neurocomputing.

[4]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[5]  Aapo Hyvärinen,et al.  Gaussian moments for noisy independent component analysis , 1999, IEEE Signal Processing Letters.

[6]  Aapo Hyv Fast and Robust Fixed-Point Algorithms for Independent Component Analysis , 1999 .

[7]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[8]  Zhiguo Jiang,et al.  Journal of Computational and Applied Mathematics a Fixed-point Algorithm for Blind Source Separation with Nonlinear Autocorrelation , 2022 .

[9]  Pierre Comon Independent component analysis - a new concept? signal processing , 1994 .

[10]  Aapo Hyvrinen,et al.  Fast and Robust Fixed-Point Algorithms , 1999 .

[11]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[12]  Petteri Pajunen,et al.  Blind source separation using algorithmic information theory , 1998, Neurocomputing.

[13]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[14]  A. Hyvarinen,et al.  Fast ICA for noisy data using Gaussian moments , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[15]  E. Oja,et al.  Independent Component Analysis , 2013 .

[16]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[17]  Aapo Hyvärinen,et al.  Complexity Pursuit: Separating Interesting Components from Time Series , 2001, Neural Computation.

[18]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[19]  Zhenwei Shi,et al.  A fast fixed-point algorithm for complexity pursuit , 2005, Neurocomputing.

[20]  Aapo Hyv Gaussian Moments for Noisy Independent Component Analysis , 1999 .

[21]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[22]  Wei Liu,et al.  A normalised kurtosis-based algorithm for blind source extraction from noisy measurements , 2006, Signal Process..

[23]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.