Good-case Latency of Byzantine Broadcast: a Complete Categorization

This paper explores the good-case latency of Byzantine fault-tolerant broadcast, motivated by the real-world latency and performance of practical state machine replication protocols. The good-case latency measures the time it takes for all non-faulty parties to commit when the designated broadcaster is non-faulty. We provide a complete characterization of tight bounds on good-case latency, in the authenticated setting under synchrony, partial synchrony and asynchrony. Some of our new results may be surprising, e.g., 2-round PBFT-style partially synchronous Byzantine broadcast is possible if and only if n ≥ 5ƒ-1, and a tight bound for good-case latency under n/3 < ƒ < n/2 under synchrony is not an integer multiple of the delay bound.

[1]  Michael Ben-Or,et al.  Another advantage of free choice (Extended Abstract): Completely asynchronous agreement protocols , 1983, PODC '83.

[2]  M. Rambaud,et al.  The latency costs of Optimistically fast output and of Strong unanimity, in authenticated leader-based Byzantine consensus under partial synchrony , 2020 .

[3]  Elaine Shi,et al.  Thunderella: Blockchains with Optimistic Instant Confirmation , 2018, IACR Cryptol. ePrint Arch..

[4]  Danny Dolev,et al.  Authenticated Algorithms for Byzantine Agreement , 1983, SIAM J. Comput..

[5]  Marcin Paprzycki,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 2001, Scalable Comput. Pract. Exp..

[6]  Michael Ben-Or,et al.  Another advantage of free choice (Extended Abstract): Completely asynchronous agreement protocols , 1983, PODC '83.

[7]  R. Guerraoui,et al.  Best-Case Complexity of Asynchronous Byzantine Consensus , 2005 .

[8]  Petr Kuznetsov,et al.  Revisiting Optimal Resilience of Fast Byzantine Consensus , 2021, PODC.

[9]  Robbert van Renesse,et al.  Bosco: One-Step Byzantine Asynchronous Consensus , 2008, DISC.

[10]  Ran Canetti,et al.  Fast asynchronous Byzantine agreement with optimal resilience , 1993, STOC.

[11]  Gabriel Bracha,et al.  Asynchronous Byzantine Agreement Protocols , 1987, Inf. Comput..

[12]  Kartik Nayak,et al.  Brief Announcement: Byzantine Agreement, Broadcast and State Machine Replication with Optimal Good-Case Latency , 2020, DISC.

[13]  Rafail Ostrovsky,et al.  Round Complexity of Authenticated Broadcast with a Dishonest Majority , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[14]  Nancy A. Lynch,et al.  Consensus in the presence of partial synchrony , 1988, JACM.

[15]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[16]  Ethan Buchman,et al.  Tendermint: Byzantine Fault Tolerance in the Age of Blockchains , 2016 .

[17]  Danny Dolev,et al.  Dynamic fault-tolerant clock synchronization , 1995, JACM.

[18]  Miguel Oom Temudo de Castro,et al.  Practical Byzantine fault tolerance , 1999, OSDI '99.

[19]  Shay Kutten,et al.  Fast isolation of arbitrary forwarding faults , 1989, PODC '89.

[20]  Kartik Nayak,et al.  Sync HotStuff: Simple and Practical Synchronous State Machine Replication , 2020, 2020 IEEE Symposium on Security and Privacy (SP).

[21]  Silvio Micali,et al.  Optimal algorithms for Byzantine agreement , 1988, STOC '88.

[22]  Ittai Abraham,et al.  HotStuff: BFT Consensus with Linearity and Responsiveness , 2019, PODC.

[23]  Jonathan Katz,et al.  On Expected Constant-Round Protocols for Byzantine Agreement , 2006, CRYPTO.

[24]  Kartik Nayak,et al.  Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected O(n2) Communication, and Optimal Resilience , 2019, IACR Cryptol. ePrint Arch..

[25]  Elaine Shi,et al.  Hybrid Consensus: Efficient Consensus in the Permissionless Model , 2016, DISC.

[26]  Ramakrishna Kotla,et al.  Zyzzyva , 2007, SOSP.

[27]  Elaine Shi,et al.  Expected Constant Round Byzantine Broadcast under Dishonest Majority , 2020, IACR Cryptol. ePrint Arch..

[28]  Jean-Philippe Martin,et al.  Fast Byzantine Consensus , 2006, IEEE Transactions on Dependable and Secure Computing.

[29]  Kartik Nayak,et al.  On the Optimality of Optimistic Responsiveness , 2020, IACR Cryptol. ePrint Arch..

[30]  Hans-Peter Seidel,et al.  Image-based reconstruction of spatial appearance and geometric detail , 2003, TOGS.

[31]  Nancy A. Lynch,et al.  A Lower Bound for the Time to Assure Interactive Consistency , 1982, Inf. Process. Lett..

[32]  Michael O. Rabin,et al.  Randomized byzantine generals , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[33]  Benny Pinkas,et al.  SBFT: A Scalable and Decentralized Trust Infrastructure , 2018, 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[34]  Kartik Nayak,et al.  Brief Note: Fast Authenticated Byzantine Consensus , 2021, ArXiv.

[35]  Danny Dolev,et al.  Early stopping in Byzantine agreement , 1990, JACM.