Study of a tri-trophic prey-dependent food chain model of interacting populations.

[1]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[2]  E. C. Pielou An introduction to mathematical ecology , 1970 .

[3]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[4]  Jorge Sotomayor,et al.  Generic Bifurcations of Dynamical Systems , 1973 .

[5]  P Hogeweg,et al.  Interactive instruction on population interactions. , 1978, Computers in biology and medicine.

[6]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[8]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[9]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[10]  Marten Scheffer,et al.  Should we expect strange attractors behind plankton dynamics―and if so, should we bother? , 1991 .

[11]  V Rai,et al.  Period-doubling bifurcations leading to chaos in a model food chain , 1993 .

[12]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[13]  Peter A. Abrams,et al.  The Effects of Enrichment of Three‐Species Food Chains with Nonlinear Functional Responses , 1994 .

[14]  J N Eisenberg,et al.  The structural stability of a three-species food chain model. , 1995, Journal of theoretical biology.

[15]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[16]  Kevin S. McCann,et al.  Bifurcation Structure of a Three-Species Food-Chain Model , 1995 .

[17]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[18]  B W Kooi,et al.  Consequences of population models for the dynamics of food chains. , 1998, Mathematical biosciences.

[19]  Sze-Bi Hsu,et al.  Extinction of top-predator in a three-level food-chain model , 1998 .

[20]  K. McCann,et al.  Food Web Stability: The Influence of Trophic Flows across Habitats , 1998, The American Naturalist.

[21]  Bernd Krauskopf,et al.  Nonlinear Dynamics of Interacting Populations , 1998 .

[22]  S Rinaldi,et al.  Singular homoclinic bifurcations in tritrophic food chains. , 1998, Mathematical biosciences.

[23]  Sebastiaan A.L.M. Kooijman,et al.  Homoclinic and heteroclinic orbits to a cycle in a tri-trophic food chain , 1999 .

[24]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[25]  Yuri A. Kuznetsov,et al.  Belyakov Homoclinic Bifurcations in a Tritrophic Food Chain Model , 2001, SIAM J. Appl. Math..

[26]  B W Kooi,et al.  Multiple attractors and boundary crises in a tri-trophic food chain. , 2001, Mathematical biosciences.

[27]  B W Kooi,et al.  Numerical bifurcation analysis of a tri-trophic food web with omnivory. , 2002, Mathematical biosciences.

[28]  Peter A. Abrams,et al.  The responses of unstable food chains to enrichment , 1994, Evolutionary Ecology.

[29]  Jiang Yu,et al.  Stability and Hopf bifurcation analysis in a three-level food chain system with delay , 2007 .

[30]  Min Zhao,et al.  The dynamic complexity of a three species food chain model , 2008 .

[31]  M. Haque,et al.  Ratio-Dependent Predator-Prey Models of Interacting Populations , 2009, Bulletin of mathematical biology.

[32]  M. Haque,et al.  A detailed study of the Beddington-DeAngelis predator-prey model. , 2011, Mathematical biosciences.

[33]  M. Haque,et al.  Existence of complex patterns in the Beddington-DeAngelis predator-prey model. , 2012, Mathematical biosciences.