An Adaptive Finite Element Method for the Transmission Eigenvalue Problem

The classical weak formulation of the Helmholtz transmission eigenvalue problem can be linearized into an equivalent nonsymmetric eigenvalue problem. Based on this nonsymmetric eigenvalue problem, we first discuss the a posteriori error estimates and adaptive algorithm of conforming finite elements for the Helmholtz transmission eigenvalue problem. We give the a posteriori error indicators for primal eigenfunction, dual eigenfunction and eigenvalue. Theoretical analysis shows that the indicators for both primal eigenfunction and dual eigenfunction are reliable and efficient and that the indicator for eigenvalue is reliable. Numerical experiments confirm our theoretical analysis.

[1]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[2]  Hai Bi,et al.  A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue problems , 2014 .

[3]  Xia Ji,et al.  Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.

[4]  Carsten Carstensen,et al.  A posteriori error estimators for convection--diffusion eigenvalue problems , 2014 .

[5]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[6]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[7]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[8]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[9]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[10]  Jiguang Sun,et al.  Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..

[11]  Jiguang Sun Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..

[12]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[13]  Wen-Wei Lin,et al.  On Spectral Analysis and a Novel Algorithm for Transmission Eigenvalue Problems , 2015, J. Sci. Comput..

[14]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[15]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[16]  Jie Shen,et al.  A Spectral-Element Method for Transmission Eigenvalue Problems , 2013, J. Sci. Comput..

[17]  Zhimin Zhang,et al.  A Robust Residual-Type a Posteriori Error Estimator for Convection–Diffusion Equations , 2015, J. Sci. Comput..

[18]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[19]  Hai Bi,et al.  Error estimates and a two grid scheme for approximating transmission eigenvalues , 2015, 1506.06486.

[20]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[21]  Carsten Carstensen,et al.  An adaptive homotopy approach for non-selfadjoint eigenvalue problems , 2011, Numerische Mathematik.

[22]  Bryan P. Rynne,et al.  The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .

[23]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[24]  End Semester Me Finite element methods , 2018, Graduate Studies in Mathematics.

[25]  Carsten Carstensen,et al.  An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.

[26]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[27]  Xia Ji,et al.  A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..