An Adaptive Finite Element Method for the Transmission Eigenvalue Problem
暂无分享,去创建一个
[1] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[2] Hai Bi,et al. A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue problems , 2014 .
[3] Xia Ji,et al. Algorithm 922: A Mixed Finite Element Method for Helmholtz Transmission Eigenvalues , 2012, TOMS.
[4] Carsten Carstensen,et al. A posteriori error estimators for convection--diffusion eigenvalue problems , 2014 .
[5] D. Colton,et al. Analytical and computational methods for transmission eigenvalues , 2010 .
[6] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[7] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[8] Rolf Rannacher,et al. A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..
[9] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[10] Jiguang Sun,et al. Error Analysis for the Finite Element Approximation of Transmission Eigenvalues , 2014, Comput. Methods Appl. Math..
[11] Jiguang Sun. Iterative Methods for Transmission Eigenvalues , 2011, SIAM J. Numer. Anal..
[12] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[13] Wen-Wei Lin,et al. On Spectral Analysis and a Novel Algorithm for Transmission Eigenvalue Problems , 2015, J. Sci. Comput..
[14] Fioralba Cakoni,et al. The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..
[15] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[16] Jie Shen,et al. A Spectral-Element Method for Transmission Eigenvalue Problems , 2013, J. Sci. Comput..
[17] Zhimin Zhang,et al. A Robust Residual-Type a Posteriori Error Estimator for Convection–Diffusion Equations , 2015, J. Sci. Comput..
[18] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[19] Hai Bi,et al. Error estimates and a two grid scheme for approximating transmission eigenvalues , 2015, 1506.06486.
[20] R. Rannacher,et al. On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .
[21] Carsten Carstensen,et al. An adaptive homotopy approach for non-selfadjoint eigenvalue problems , 2011, Numerische Mathematik.
[22] Bryan P. Rynne,et al. The interior transmission problem and inverse scattering from inhomogeneous media , 1991 .
[23] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[24] End Semester Me. Finite element methods , 2018, Graduate Studies in Mathematics.
[25] Carsten Carstensen,et al. An oscillation-free adaptive FEM for symmetric eigenvalue problems , 2011, Numerische Mathematik.
[26] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[27] Xia Ji,et al. A Multigrid Method for Helmholtz Transmission Eigenvalue Problems , 2014, J. Sci. Comput..