Surface interactions of aerosols and their impact on infectious disease transmission

.............................................................................................................. vi List of Figures ..................................................................................................... ix List of Tables ..................................................................................................... xv List of Symbols ................................................................................................ xvii Chapter

[1]  Petros Koutrakis,et al.  Source apportionment of indoor aerosols in Suffolk and Onondaga counties, New York , 1992 .

[2]  Andrea R. Ferro,et al.  Resuspension of Dust Particles in a Chamber and Associated Environmental Factors , 2008 .

[3]  P. Gurian,et al.  Characterizing bioaerosol risk from environmental sampling. , 2012, Environmental science & technology.

[4]  Phillip J. Durst,et al.  Predicting RMS surface roughness using fractal dimension and PSD parameters , 2011 .

[5]  H. Butt,et al.  Adhesion forces between individual gold and polystyrene particles , 2002 .

[6]  J. Cheesbrough,et al.  Possible prolonged environmental survival of small round structured viruses. , 1997, The Journal of hospital infection.

[7]  H. Kamiya,et al.  Fractal analysis of the influence of surface roughness of toner particles on their flow properties and adhesion behavior , 2008 .

[8]  A. Ferro,et al.  Wind tunnel study and numerical simulation of dust particle resuspension from indoor surfaces in turbulent flows , 2013 .

[9]  Shuji Matsusaka,et al.  Particle reentrainment from a fine powder layer in a turbulent air flow , 1996 .

[10]  Bruce R. White,et al.  Definition and measurement of dust aeolian thresholds , 2004 .

[11]  T. Vanderlick,et al.  Measurement of the Deformation and Adhesion of Rough Solids in Contact , 1999 .

[12]  Influence of random roughness on cantilever curvature sensitivity , 2010, 1001.1645.

[13]  G. Kasper,et al.  On the kinetics of particle reentrainment from surfaces , 1989 .

[14]  A. Chan,et al.  Indoor–outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions , 2002 .

[15]  H. Einstein,et al.  The Viscous Sublayer Along a Smooth Boundary , 1956 .

[16]  G. Vancso,et al.  Microparticle adhesion studies by atomic force microscopy , 2002 .

[17]  A. Volokitin,et al.  On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Bin Zhao,et al.  The effectiveness of an air cleaner in controlling droplet/aerosol particle dispersion emitted from a patient's mouth in the indoor environment of dental clinics , 2010, Journal of The Royal Society Interface.

[19]  P V Nielsen,et al.  Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. , 2007, Indoor air.

[20]  Charles P. Gerba,et al.  Significance of Fomites in the Spread of Respiratory and Enteric Viral Disease , 2007, Applied and Environmental Microbiology.

[21]  M S Zuraimi Is ventilation duct cleaning useful? A review of the scientific evidence. , 2010, Indoor air.

[22]  B. Poelsema,et al.  Surface adhesion and its dependence on surface roughness and humidity measured with a flat AFM tip , 2012 .

[23]  R. Allen Bowling,et al.  An Analysis of Particle Adhesion on Semiconductor Surfaces , 1985 .

[24]  Jing-Shiang Hwang,et al.  Determination of Uniformity of Filter Deposits , 2006 .

[25]  W. Nix,et al.  Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates , 1988 .

[26]  Ali Ata,et al.  Adhesion between nanoscale rough surfaces. II. Measurement and comparison with theory , 2000 .

[27]  T. Holsen,et al.  Design and Development of Novel Large Particle Inlet for PM Larger Than 10 μm (PM > 10 ) , 2008 .

[28]  A. Kochi,et al.  The global tuberculosis situation and the new control strategy of the World Health Organization. , 1991, Tubercle.

[29]  R. Brodkey,et al.  A visual investigation of the wall region in turbulent flow , 1969, Journal of Fluid Mechanics.

[30]  L. Ponson,et al.  Two-dimensional scaling properties of experimental fracture surfaces. , 2006, Physical review letters.

[31]  M. E. O'Neill,et al.  A sphere in contact with a plane wall in a slow linear shear flow , 1968 .

[32]  Y. Kubota,et al.  An Experimental Investigation of the Flowfield and Dust Resuspension Due to Idealized Human Walking , 2009 .

[33]  Jeffrey A. Siegel,et al.  Particle Resuspension During the Use of Vacuum Cleaners on Residential Carpet , 2008, Journal of occupational and environmental hygiene.

[34]  S. Matope,et al.  Van der Waals interactions between silica spheres and metallic thin films created by e-beam evaporation , 2012 .

[35]  Mukul M. Sharma,et al.  Factors controlling the hydrodynamic detachment of particles from surfaces , 1992 .

[36]  A. Foster,et al.  Experimental humidity dependency of small particle adhesion on silica and titania. , 2006, Journal of colloid and interface science.

[37]  T. Staedler,et al.  Sliding and rolling of individual micrometre sized glass particles on rough silicon surfaces , 2013 .

[38]  Paula Krauter,et al.  Reaerosolization of Fluidized Spores in Ventilation Systems , 2007, Applied and Environmental Microbiology.

[39]  C. Chiang,et al.  Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings. , 2005, Indoor air.

[40]  Martin Piech,et al.  The Effect of Nanoscale Roughness on Long Range Interaction Forces , 1999 .

[41]  B. J. Thio,et al.  Characterization of bioparticulate adhesion to synthetic carpet polymers with atomic force microscopy , 2005 .

[42]  L. Looi,et al.  AFM study of adhesion between polystyrene particles; — The influence of relative humidity and applied load , 2007 .

[43]  W. Peukert,et al.  The influence of particle charge and roughness on particle–substrate adhesion , 2003 .

[44]  M. Ayabe,et al.  Assessment of minute-by-minute stepping rate of physical activity under free-living conditions in female adults. , 2011, Gait & Posture.

[45]  J. Drelich,et al.  Pull-off force measurements between rough surfaces by atomic force microscopy. , 2002, Journal of colloid and interface science.

[46]  William W. Nazaroff,et al.  Experiments Measuring Particle Deposition from Fully Developed Turbulent Flow in Ventilation Ducts , 2004 .

[47]  T. L. Thatcher,et al.  Particle Deposition from Natural Convection Enclosure Flow Onto Smooth Surfaces , 1996 .

[48]  David Cyranoski,et al.  SARS: What have we learned? , 2003, Nature.

[49]  M. Quintanilla,et al.  Lateral Force Microscopy with micrometer-sized particles: Effect of wear on adhesion and friction , 2010 .

[50]  M. J. Brown,et al.  Reaerosolization of Bacillus spp. in outdoor environments: a review of the experimental literature. , 2012, Biosecurity and bioterrorism : biodefense strategy, practice, and science.

[51]  R. Kronauer,et al.  Experimental evidence of waves in the sublayer , 1971, Journal of Fluid Mechanics.

[52]  Bin Zhao,et al.  An experimental study on short-time particle resuspension from inner surfaces of straight ventilation ducts , 2012 .

[53]  Yoojeong Kim,et al.  Source term models for fine particle resuspension from indoor surfaces , 2010 .

[54]  Z. Ould-Dada,et al.  Resuspension of small particles from tree surfaces , 2001 .

[55]  Kaarle Hämeri,et al.  Particle size characterization and emission rates during indoor activities in a house , 2006 .

[56]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[57]  I. Larson,et al.  Surface roughness contribution to the adhesion force distribution of salmeterol xinafoate on lactose carriers by atomic force microscopy. , 2005, Journal of pharmaceutical sciences.

[58]  H. Rumpf Die Wissenschaft des Agglomerierens , 1974 .

[59]  B. Yates,et al.  Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow , 1973 .

[60]  William W. Nazaroff,et al.  Framework for Evaluating Measures to Control Nosocomial Tuberculosis Transmission , 1998 .

[61]  Douglas S. Finnicum,et al.  Turbulent normal velocity fluctuations close to a wall , 1985 .

[62]  Wladyslaw Jan Kowalski,et al.  Aerobiological engineering handbook : a guide to airborne disease control technologies , 2006 .

[63]  Alvin C.K. Lai,et al.  Modeling Indoor Particle Deposition from Turbulent Flow onto Smooth Surfaces , 2000 .

[64]  J. Duguid,et al.  The size and the duration of air-carriage of respiratory droplets and droplet-nuclei , 1946, Epidemiology and Infection.

[65]  B. Derjaguin,et al.  On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane , 1980 .

[66]  A. Guha Transport and Deposition of Particles in Turbulent and Laminar Flow , 2008 .

[67]  A. Fromentin Time dependent particle resuspension from a multi-layer deposit by turbulent flow , 1989 .

[68]  G. L. Klimchitskaya,et al.  Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals , 2000 .

[69]  R. Loudon,et al.  Droplet expulsion from the respiratory tract. , 1967, The American review of respiratory disease.

[70]  K. Turner,et al.  The Effect of Atomic-Scale Roughness on the Adhesion of Nanoscale Asperities: A Combined Simulation and Experimental Investigation , 2013, Tribology Letters.

[71]  Gennady Ziskind,et al.  Resuspension of particulates from surfaces to turbulent flows : review and analysis , 1995 .

[72]  M. W. Reeks,et al.  Kinetic models for particle resuspension in turbulent flows: theory and measurement , 2001 .

[73]  Singh,et al.  Adhesion between Nanoscale Rough Surfaces. , 2000, Journal of colloid and interface science.

[74]  W. Nazaroff Indoor particle dynamics. , 2004, Indoor air.

[75]  B. Bean,et al.  Survival of influenza viruses on environmental surfaces. , 1982, The Journal of infectious diseases.

[76]  Kaarle Hämeri,et al.  Indoor and outdoor particle size characterization at a family house in Espoo-Finland , 2005 .

[77]  A. Ferro,et al.  A comparative study of walking-induced dust resuspension using a consistent test mechanism. , 2014, Indoor air.

[78]  M. Buttner Monitoring Airborne Fungal Spores in an Experimental Indoor Environment To Evaluate Sampling Methods and the Effects of Human Activity on Air Sampling , 1993, Applied and environmental microbiology.

[79]  Tiina Reponen,et al.  Everyday activities and variation of fungal spore concentrations in indoor air , 1993 .

[80]  C Mohrdieck,et al.  Capillary forces between chemically different substrates. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[81]  H. Khalifa,et al.  Aerodynamic Resuspension of Particles Due to a Falling Flat Disk , 2013 .

[82]  M. Wan,et al.  Mathematical models for the van der Waals force and capillary force between a rough particle and surface. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[83]  S. Perni,et al.  Comparison of JKR- and DMT-based multi-asperity adhesion model: Theory and experiment , 2011 .

[84]  J. Greenwood,et al.  The Contact of Two Nominally Flat Rough Surfaces , 1970 .

[85]  D. Goldmann Transmission of viral respiratory infections in the home , 2000, The Pediatric infectious disease journal.

[86]  Yahav Morag,et al.  Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces , 2007 .

[87]  Thomas E McKone,et al.  Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. , 2002, Environmental science & technology.

[88]  M. Reeks,et al.  On the resuspension of small particles by a turbulent flow , 1988 .

[89]  William W. Nazaroff,et al.  Mathematical Modeling of Indoor Aerosol Dynamics , 1989 .

[90]  GREGORY J. WELK,et al.  Stride rate recommendations for moderate-intensity walking. , 2011, Medicine and science in sports and exercise.

[91]  Michael P. Atkinson,et al.  Quantifying the Routes of Transmission for Pandemic Influenza , 2008, Bulletin of mathematical biology.

[92]  A. Lai Particle deposition indoors: a review. , 2002, Indoor air.

[93]  B. N. J. Perssona The effect of surface roughness on the adhesion of elastic solids , 2001 .

[94]  A. Townsend The properties of equilibrium boundary layers , 1956, Journal of Fluid Mechanics.

[95]  R. E. Lawson,et al.  A "test of concept" comparison of aerodynamic and mechanical resuspension mechanisms for particles deposited on field rye grass ( Secale cercele).—Part 2. Threshold mechanical energies for resuspension particle fluxes , 2004 .

[96]  B. Bhushan,et al.  Alkylphosphonate modified aluminum oxide surfaces. , 2006, The journal of physical chemistry. B.

[97]  C. R. Smith,et al.  Observation of streamwise rotation in the near‐wall region of a turbulent boundary layer , 1983 .

[98]  F. Robbe-Valloire Statistical analysis of asperities on a rough surface , 2001 .

[99]  Xudong Xiao,et al.  Investigation of Humidity-Dependent Capillary Force , 2000 .

[100]  R. E. Lawson,et al.  A “test of concept” comparison of aerodynamic and mechanical resuspension mechanisms for particles deposited on field rye grass (Secale cercele). Part 1. Relative particle flux rates , 2004 .

[101]  N. Stilianakis,et al.  Inactivation of influenza A viruses in the environment and modes of transmission: A critical review , 2008, Journal of Infection.

[102]  K. Rowlen,et al.  Adhesion forces measured by atomic force microscopy in humid air , 2000, Analytical chemistry.

[103]  Gwen A. Loosmore,et al.  Evaluation and development of models for resuspension of aerosols at short times after deposition , 2003 .

[104]  M. Kulmala,et al.  Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber , 2009 .

[105]  Brij M Moudgil,et al.  Capillary forces between surfaces with nanoscale roughness. , 2002, Advances in colloid and interface science.

[106]  R. Brach,et al.  Microparticle detachment from surfaces exposed to turbulent air flow: Effects of flow and particle deposition characteristics , 2004 .

[107]  L. Chua,et al.  The turbulent interaction region of a circular jet , 1986 .

[108]  Giancarlo R. Salazar-Banda,et al.  Determination of the adhesion force between particles and a flat surface, using the centrifuge technique , 2007 .

[109]  Michael D Sohn,et al.  Framework for evaluating anthrax risk in buildings. , 2009, Environmental science & technology.

[110]  Andrea R. Ferro,et al.  Walking-induced particle resuspension in indoor environments , 2014 .

[111]  Yuguo Li,et al.  Exhaled droplets due to talking and coughing , 2009, Journal of The Royal Society Interface.

[112]  E. Aifantis,et al.  Self-affine surface morphology of plastically deformed metals. , 2004, Physical review letters.

[113]  Georgopoulos,et al.  Turbulent Resuspension of Small Nondeformable Particles. , 1998, Journal of colloid and interface science.

[114]  P. Mulvaney,et al.  Characterisation of adhesional properties of lactose carriers using atomic force microscopy. , 2001, Journal of pharmaceutical and biomedical analysis.

[115]  Bruce R. White,et al.  Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel , 2006 .

[116]  C. Chao,et al.  Review and comparison between the Wells–Riley and dose‐response approaches to risk assessment of infectious respiratory diseases , 2009, Indoor air.

[117]  Adam S. Foster,et al.  Towards an accurate description of the capillary force in nanoparticle-surface interactions , 2005 .

[118]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[119]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[120]  Reifenberger,et al.  Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate. , 1996, Physical review. B, Condensed matter.

[121]  J. Drelich,et al.  Analysis of atomic force microscope pull-off forces for gold surfaces portraying nanoscale roughness and specific chemical functionality , 2004 .

[122]  M. Nicas,et al.  An analytical framework for relating dose, risk, and incidence: an application to occupational tuberculosis infection. , 1996, Risk analysis : an official publication of the Society for Risk Analysis.

[123]  C. Weis,et al.  Secondary aerosolization of viable Bacillus anthracis spores in a contaminated US Senate Office. , 2002, JAMA.

[124]  T. Reponen,et al.  Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1→3)-β-d-glucan , 2009 .

[125]  Ari Karppinen,et al.  A model for evaluating the population exposure to ambient air pollution in an urban area , 2002 .

[126]  Hans-Jürgen Butt,et al.  Capillary forces: influence of roughness and heterogeneity. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[127]  Karin Foarde,et al.  Assessment of fungal (Penicillium chrysogenum) growth on three HVAC duct materials , 1996 .

[128]  Colin Thornton,et al.  A Theoretical Study of the Liquid Bridge Forces between Two Rigid Spherical Bodies , 1993 .

[129]  Thomas Schneider,et al.  A two compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms , 1999 .

[130]  A. Ferro,et al.  Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows , 2013 .

[131]  G. Spinks,et al.  Atomic force microscopy investigation of the adhesion between a single polymer sphere and a flat surface , 1998 .

[132]  Tanya Nigam,et al.  Effect of extreme surface roughness on the electrical characteristics of ultra-thin gate oxides , 1999 .

[133]  John R. Dorgan,et al.  The bulk modulus and Poisson's ratio of “incompressible” materials , 2008 .

[134]  A. Ibrahim,et al.  Experiments and validation of a model for microparticle detachment from a surface by turbulent air flow , 2008 .

[135]  Lawrence C. Bank,et al.  Survey of Bioterrorism Risk in Buildings , 2008 .

[136]  N. Harnby,et al.  The effect of humidity on the form of water retention in a powder , 1978 .

[137]  W. Fisk,et al.  Economic benefits of an economizer system: Energy savings and reduced sick leave , 2004 .

[138]  B. Moudgil,et al.  Measurement of oil-mediated particle adhesion to a silica substrate by atomic force microscopy , 2002 .

[139]  Stephen J. Kline,et al.  The production of turbulence near a smooth wall in a turbulent boundary layer , 1971, Journal of Fluid Mechanics.

[140]  Andrea R. Ferro,et al.  Estimating the Resuspension Rate and Residence Time of Indoor Particles , 2008, Journal of the Air & Waste Management Association.

[141]  J. Edwards,et al.  Human-Induced Particle Re-Suspension in a Room , 2010 .

[142]  Merrick E. Krause,et al.  The 9/11 Commission Report: Final Report of the National Commission on Terrorist Attacks upon the United States , 2004 .

[143]  R. Shaw,et al.  Particle resuspension in a turbulent boundary layer-observed and modeled , 1990 .

[144]  Roberta Vecchi,et al.  The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy) , 2004 .

[145]  Hai Jiang,et al.  Simulation of particle deposition in ventilation duct with a particle–wall impact model , 2010 .

[146]  Fernando Galembeck,et al.  Easy polymer latex self-assembly and colloidal crystal formation: the case of poly[styrene-co-(2-hydroxyethyl methacrylate)] , 1998 .

[147]  A. Goddard,et al.  Factors affecting particle resuspension from grass swards , 1997 .

[148]  P J Catalano,et al.  Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. , 2001, Environmental science & technology.

[149]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[150]  A. Riul,et al.  Mapping of adhesion forces on soil minerals in air and water by atomic force spectroscopy (AFS) , 2003 .

[151]  H. Pollock,et al.  Adhesion Forces between Glass and Silicon Surfaces in Air Studied by AFM: Effects of Relative Humidity, Particle Size, Roughness, and Surface Treatment , 2002 .

[152]  Wolfgang Peukert,et al.  Modeling adhesion forces between deformable bodies by FEM and Hamaker summation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[153]  R. Maxwell,et al.  MOVEMENT OF RADIONUCLIDES IN TERRESTRIAL ECOSYSTEMS BY PHYSICAL PROCESSES , 2002, Health physics.

[154]  Kaarle Hämeri,et al.  Emission Rates Due to Indoor Activities: Indoor Aerosol Model Development, Evaluation, and Applications , 2005 .

[155]  L. Baillie,et al.  The development of new vaccines against Bacillus anthracis , 2001, Journal of applied microbiology.

[156]  Vladimir P Reshetin,et al.  Simulation Modeling of Anthrax Spore Dispersion in a Bioterrorism Incident , 2003, Risk analysis : an official publication of the Society for Risk Analysis.

[157]  C. P. Quinn,et al.  Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. , 2001, Emerging infectious diseases.

[158]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[159]  Gupta,et al.  Substrate Morphology and Particle Adhesion in Reacting Systems. , 2000, Journal of colloid and interface science.

[160]  F. Dutra,et al.  Airborne Contagion and Air Hygiene: An Ecological Study of Droplet Infections , 1955 .

[161]  S. Perni,et al.  Multiasperity contact adhesion model for universal asperity height and radius of curvature distributions. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[162]  James R. Smith,et al.  Mapping the Surface Heterogeneity of a Polymer Blend: An Adhesion-Force-Distribution Study Using the Atomic Force Microscope , 2000 .

[163]  J. Drelich,et al.  Atomic Force Microscope Pull-off Force Measurements for Insulin in Contact with Acrylonitrile–Butadiene–Styrene and Polypropylene Surfaces at Various Humidities , 2011 .

[164]  D. Braaten,et al.  Wind Tunnel Experiments of Large Particle Reentrainment-Deposition and Development of Large Particle Scaling Parameters , 1994 .

[165]  D. Rimai,et al.  Surface roughness and its influence on particle adhesion using atomic force techniques , 1995 .

[166]  Norman J. Glover Countering Chemical and Biological Terrorism , 2002 .

[167]  R. Adrian Structure of Turbulent Boundary Layers , 2013 .

[168]  Kevin Cooper,et al.  Simulation of the Adhesion of Particles to Surfaces. , 2001, Journal of colloid and interface science.

[169]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[170]  J. Greenwood,et al.  Surface Roughness and Contact: An Apology , 2001 .

[171]  H. Eckelmann,et al.  The fluctuating wall‐shear stress and the velocity field in the viscous sublayer , 1988 .

[172]  Yoshihiro Kubota,et al.  Aerodynamic Particle Resuspension Due to Human Foot and Model Foot Motions , 2013 .

[173]  Martyn C. Davies,et al.  Direct Observation of Single Particle Electrostatic Charging by Atomic Force Microscopy , 2007, Pharmaceutical Research.

[174]  Michael E. Plesha,et al.  Multiscale roughness and modeling of MEMS interfaces , 2005 .

[175]  EunAe Cho,et al.  Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates , 2005 .

[176]  V. Houk,et al.  Tuberculin conversion. The iceberg of tuberculous pathogenesis. , 1967, Archives of environmental health.

[177]  W. Jo,et al.  Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. , 2005, Chemosphere.

[178]  J. Israelachvili Intermolecular and surface forces , 1985 .

[179]  A. Boehm,et al.  Contributions of Foot Traffic and Outdoor Concentrations to Indoor Airborne Aspergillus , 2011 .

[180]  Roddam Narasimha,et al.  The ‘bursting’ phenomenon in a turbulent boundary layer , 1971, Journal of Fluid Mechanics.

[181]  Hubert M. Pollock,et al.  Surface forces, deformation and adherence at metal microcontacts , 1984 .

[182]  M. Koopmans,et al.  Inactivation of Caliciviruses , 2004, Applied and Environmental Microbiology.

[183]  Ali Ata,et al.  Role of surface roughness in capillary adhesion , 2002 .

[184]  D. Milton,et al.  Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. , 2003, Indoor air.

[185]  Gene McClellan,et al.  A review of inhalability fraction models: discussion and recommendations , 2009, Inhalation toxicology.

[186]  J. Carballo,et al.  Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers , 2000 .

[187]  N. Tippayawong,et al.  Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments , 2009 .

[188]  Effect of temperature on the Hurst and growth exponents of CdTe polycrystalline films , 2006 .

[189]  M. Fletcher,et al.  Influence of Substratum Characteristics on the Attachment of a Marine Pseudomonad to Solid Surfaces , 1979, Applied and environmental microbiology.

[190]  Pasi Aalto,et al.  Aerosol Particle Number Concentration Measurements in Five European Cities Using TSI-3022 Condensation Particle Counter over a Three-Year Period during Health Effects of Air Pollution on Susceptible Subpopulations , 2005, Journal of the Air & Waste Management Association.

[191]  T. L. Thatcher,et al.  Measurements and modeling of deposited particle transport by foot traffic indoors. , 2014, Environmental science & technology.

[192]  Hwa-Chi Wang,et al.  Effects of Inceptive motion on particle detachment from surfaces , 1990 .

[193]  Eric B. Sansone,et al.  Redispersion of indoor surface contamination: A review , 1977 .

[194]  Bin Zhao,et al.  A Particle Resuspension Model in Ventilation Ducts , 2012 .

[195]  E. Kauppinen,et al.  Adhesion force measurement of a DPI size pharmaceutical particle by colloid probe atomic force microscopy , 2004 .

[196]  T W Armstrong,et al.  A Quantitative Microbial Risk Assessment Model for Legionnaires' Disease: Animal Model Selection and Dose‐Response Modeling , 2007, Risk analysis : an official publication of the Society for Risk Analysis.

[197]  D. Hall Measurements of the mean force on a particle near a boundary in turbulent flow , 1988, Journal of Fluid Mechanics.

[198]  L. E. Scriven,et al.  Pendular rings between solids: meniscus properties and capillary force , 1975, Journal of Fluid Mechanics.

[199]  Maxence Bigerelle,et al.  The multi-scale roughness analyses and modeling of abrasion with the grit size effect on ground surfaces , 2012 .

[200]  M. Brady,et al.  Survival and disinfection of parainfluenza viruses on environmental surfaces. , 1990, American journal of infection control.

[201]  Yasushige Mori,et al.  Adhesion force between particles and substrate in a humid atmosphere studied by atomic force microscopy , 2006 .

[202]  Christopher Dye,et al.  The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. , 2003, Archives of internal medicine.

[203]  M. P. Wan,et al.  Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment , 2009 .

[204]  A. Afshari,et al.  Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. , 2005, Indoor air.

[205]  W. Peukert,et al.  Particle adhesion force distributions on rough surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[206]  R. Brach,et al.  Microparticle detachment from surfaces exposed to turbulent air flow: controlled experiments and modeling , 2003 .

[207]  Andrew R. McFarland,et al.  Aerosol deposition in bends with turbulent flow , 1997 .

[208]  A. Ferro,et al.  A Model for Removal of Compact, Rough, Irregularly Shaped Particles from Surfaces in Turbulent Flows , 2012 .

[209]  K. W. Nicholson Wind tunnel experiments on the resuspension of particulate material , 1993 .

[210]  Russell W. Wiener,et al.  Experimental and theoretical investigation of particle-laden airflow under a prosthetic mechanical foot in motion , 2010 .

[211]  T. Beebe,et al.  Determination of Single-Bond Forces from Contact Force Variances in Atomic Force Microscopy , 1996 .

[212]  William P. Bahnfleth,et al.  Modeling Immune Building Systems for Bioterrorism Defense , 2003 .

[213]  A. Hubbard,et al.  Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens , 2005, Journal of occupational and environmental hygiene.

[214]  L. Hildemann,et al.  The effects of human activities on exposure to particulate matter and bioaerosols in residential homes. , 2009, Environmental science & technology.

[215]  Seung-Ho Lee,et al.  Effects of size, humidity, and aging on particle removal from Si wafers , 2009 .

[216]  H. Frijlink,et al.  A centrifuge method to measure particle cohesion forces to substrate surfaces: the use of a force distribution concept for data interpretation. , 2010, International journal of pharmaceutics.

[217]  J Barker,et al.  The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet , 2005, Journal of applied microbiology.

[218]  Mark Nicas,et al.  An Integrated Model of Infection Risk in a Health‐Care Environment , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[219]  E. Hsiao,et al.  Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries. , 2010, Journal of colloid and interface science.

[220]  W. Nazaroff Norovirus, gastroenteritis, and indoor environmental quality. , 2011, Indoor air.

[221]  R. D. Sproull,et al.  Ellipsometric Evaluation of β‐Lactoglobulin Adsorption onto Low‐and High‐Energy Materials , 1992 .

[222]  P. Lioy,et al.  Seasonal deposition of housedusts onto household surfaces. , 1998, The Science of the total environment.

[223]  C. V. Madhusudana,et al.  Gap conductance in contact heat transfer , 2000 .

[224]  B G Iversen,et al.  [Anthrax as biological weapon]. , 2001, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[225]  R. Good,et al.  The effect of drop size on contact angle , 1979 .

[226]  Tracy L. Thatcher,et al.  Deposition, resuspension, and penetration of particles within a residence , 1995 .

[227]  Hai Jiang,et al.  A numerical study of bend-induced particle deposition in and behind duct bends , 2011, Building and Environment.

[228]  B. Lincoln Elastic Deformation and the Laws of Friction , 1953, Nature.

[229]  M. Aguiar,et al.  Influence of Particle Size, Applied Compression, and Substratum Material on Particle−Surface Adhesion Force Using the Centrifuge Technique , 2009 .

[230]  M. Meltzer,et al.  The economic impact of a bioterrorist attack: are prevention and postattack intervention programs justifiable? , 1997, Emerging infectious diseases.

[231]  Bin Zhao,et al.  How Particle Resuspension from Inner Surfaces of Ventilation Ducts Affects Indoor Air Quality—A Modeling Analysis , 2011 .

[232]  K. Mengersen,et al.  Characterization of expiration air jets and droplet size distributions immediately at the mouth opening , 2008, Journal of Aerosol Science.

[233]  Andrea R Ferro,et al.  Source strengths for indoor human activities that resuspend particulate matter. , 2004, Environmental science & technology.

[234]  G. Mu,et al.  The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid , 1999 .

[235]  Raymond Tellier,et al.  Review of Aerosol Transmission of Influenza A Virus , 2006, Emerging infectious diseases.

[236]  William W. Nazaroff,et al.  Modeling particle loss in ventilation ducts , 2003 .

[237]  Andrea R Ferro,et al.  Elevated personal exposure to particulate matter from human activities in a residence , 2004, Journal of Exposure Analysis and Environmental Epidemiology.

[238]  R. Brach,et al.  Surface roughness effects onmicroparticle adhesion , 2002 .

[239]  F S Rosenthal,et al.  The size distribution of droplets in the exhaled breath of healthy human subjects. , 1997, Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine.