Distance spectrum and optimized design of concatenated polar codes

Recent simulation results have shown that serial concatenation with outer codes such as cyclic redundancy check (CRC) or parity check (PC) codes can boost the error correcting performance of polar codes. A theoretical analysis for further explaining where the performance gain comes from is in order. In this paper, we try to provide such an analysis for concatenated polar codes from the distance spectrum point of view, and explore their performances with the use of successive cancellation list decoding (SCLD) and ordered statistics decoding (OSD), respectively. Numerical results show that, compared with OSD, SCLD cannot fully take the advantage of optimized weight distribution for short polar codes with CRC polynomials. We also investigate a hybrid serial concatenation scheme using both CRC and PC codes, which seems to outperform the cases when using only CRC or only PC codes as the outer code. Furthermore, we introduce an improved design for CRC-polar coding scheme by optimizing CRC bit positions and the information bits involved in the CRC functions. Simulation results show that our design leads to an improved weight distribution and thus achieves better error correcting performance.

[1]  Hossein Pishro-Nik,et al.  A practical approach to polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[2]  Tao Jiang,et al.  Parity-Check-Concatenated Polar Codes , 2016, IEEE Communications Letters.

[3]  Bin Li,et al.  An Adaptive Successive Cancellation List Decoder for Polar Codes with Cyclic Redundancy Check , 2012, IEEE Communications Letters.

[4]  Bin Li,et al.  A RM-Polar Codes , 2014, ArXiv.

[5]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[6]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[7]  Jungwon Lee,et al.  Performance Limits and Practical Decoding of Interleaved Reed-Solomon Polar Concatenated Codes , 2013, IEEE Transactions on Communications.

[8]  K. Niu,et al.  List successive cancellation decoding of polar codes , 2012 .

[9]  Aijun Liu,et al.  CRC Code Design for List Decoding of Polar Codes , 2017, IEEE Communications Letters.

[10]  Mayank Bakshi,et al.  Concatenated Polar codes , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[12]  Ying Li,et al.  Ordered Statistic Decoding for Short Polar Codes , 2016, IEEE Communications Letters.

[13]  Orhan Arikan,et al.  Polar code construction for non-binary source alphabets , 2012, 2012 20th Signal Processing and Communications Applications Conference (SIU).

[14]  Peter Trifonov,et al.  Efficient Design and Decoding of Polar Codes , 2012, IEEE Transactions on Communications.