A Combined Experimental–Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks

Zeolitic imidazolate framework (ZIF) materials have received considerable attention recently due to their potential as materials for gas separation applications. In this work, we study, both experimentally and with molecular modeling, methane adsorption in a series of five ZIFs (ZIF-25, -71, -93, -96, and -97) that share a common structural topology (RHO), but differ in imidazolate functionalization. Such a series allows for the direct assessment of the role that functionalization plays in determining methane adsorption. Experimental measurements of methane adsorption up to 1 bar at various temperatures are well reproduced by molecular simulations, which are further used to examine adsorption up to higher pressures of 80 bar, and to analyze the preferred binding sites within the structure. We find that CH4 uptake in these ZIFs is roughly proportional to the Brunauer–Emmett–Teller (BET) surface area, in contrast to our earlier work on the adsorption of CO2 for this series [J. Am. Chem. Soc.2010, 132, 11006...

[1]  B. Laird,et al.  A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks , 2012 .

[2]  S. Han,et al.  Accurate Ab Initio-Based Force Field for Predictive CO2 Uptake Simulations in MOFs and ZIFs: Development and Applications for MTV-MOFs , 2012 .

[3]  Myunghyun Paik Suh,et al.  Selective CO2 adsorption in a metal-organic framework constructed from an organic ligand with flexible joints. , 2012, Chemical communications.

[4]  Zhijuan Zhang,et al.  Computational study of adsorption and separation of CO2, CH4, and N2 by an rht-type metal-organic framework. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[5]  Rajamani Krishna,et al.  CO2/CH4, CH4/H-2 and CO2/CH4/H-2 separations at high pressures using Mg-2(dobdc) , 2012 .

[6]  Seda Keskin,et al.  Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations , 2012 .

[7]  Jesse G. McDaniel,et al.  Robust, Transferable, and Physically Motivated Force Fields for Gas Adsorption in Functionalized Zeolitic Imidazolate Frameworks , 2012 .

[8]  Matthew R. Hill,et al.  Feasibility of zeolitic imidazolate framework membranes for clean energy applications , 2012 .

[9]  J. Möllmer,et al.  Pure and mixed gas adsorption of CH4 and N2 on the metal–organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF , 2012 .

[10]  Chongli Zhong,et al.  Understanding the Effect of Trace Amount of Water on CO2 Capture in Natural Gas Upgrading in Metal–Organic Frameworks: A Molecular Simulation Study , 2012 .

[11]  J. Long,et al.  CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc) , 2012 .

[12]  Zhijuan Zhang,et al.  Experimental and theoretical investigations on the MMOF selectivity for CO2 vs. N2 in flue gas mixtures. , 2012, Dalton transactions.

[13]  Puru Jena,et al.  Highly selective CO2/CH4 gas uptake by a halogen-decorated borazine-linked polymer , 2012 .

[14]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[15]  B. Laird,et al.  Van Der Waals Density Functional Study Of Co2 Binding In Zeolitic Imidazolate Frameworks , 2012 .

[16]  A. Rodrigues,et al.  Pressure Swing Adsorption Process in Coal to Fischer–Tropsch Fuels with CO2 Capture , 2012 .

[17]  Jesse G. McDaniel,et al.  Ab Initio, Physically Motivated Force Fields for CO2 Adsorption in Zeolitic Imidazolate Frameworks , 2012 .

[18]  Chongli Zhong,et al.  Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study , 2011 .

[19]  Liang Chen,et al.  Molecular simulation of CO2, N2 and CH4 adsorption and separation in ZIF-78 and ZIF-79 , 2011 .

[20]  Alírio E. Rodrigues,et al.  Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas , 2011 .

[21]  Xuan Peng,et al.  CNT@Cu3(BTC)2 and Metal–Organic Frameworks for Separation of CO2/CH4 Mixture , 2011 .

[22]  D. Farrusseng,et al.  Experimental and Computational Study of Functionality Impact on Sodalite–Zeolitic Imidazolate Frameworks for CO2 Separation , 2011 .

[23]  G. Garberoglio,et al.  Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation , 2011 .

[24]  Seda Keskin High CO2 Selectivity of A Microporous Metal–Imidazolate Framework: A Molecular Simulation Study , 2011 .

[25]  E. Haque,et al.  Inside Cover: Chemical and Thermal Stability of Isotypic Metal–Organic Frameworks: Effect of Metal Ions (Chem. Eur. J. 23/2011) , 2011 .

[26]  R. Krishna,et al.  In silico screening of metal-organic frameworks in separation applications. , 2011, Physical chemistry chemical physics : PCCP.

[27]  S. Dai,et al.  Effect of Pore Topology and Accessibility on Gas Adsorption Capacity in Zeolitic-Imidazolate Frameworks: Bringing Molecular Simulation Close to Experiment , 2011 .

[28]  Seda Keskin,et al.  Adsorption and Transport of CH4, CO2, H2 Mixtures in a Bio-MOF Material from Molecular Simulations , 2011 .

[29]  Seda Keskin Atomistic Simulations for Adsorption, Diffusion, and Separation of Gas Mixtures in Zeolite Imidazolate Frameworks , 2011 .

[30]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[31]  J. Caro,et al.  Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization. , 2010, Journal of the American Chemical Society.

[32]  Sang Soo Han,et al.  Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. , 2010, The journal of physical chemistry. A.

[33]  Chongli Zhong,et al.  Methane adsorption in several series of newly synthesised metal-organic frameworks: a molecular simulation study , 2010 .

[34]  Omar K. Yaghi,et al.  A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. , 2010, Journal of the American Chemical Society.

[35]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[36]  F. Renzo,et al.  Molecular simulation of nitrogen adsorption in nanoporous silica. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[37]  Xiaoqin Liu,et al.  Molecular Simulation for Adsorption and Separation of CH4/H2 in Zeolitic Imidazolate Frameworks , 2010 .

[38]  W. Goddard,et al.  Zeolitic Imidazolate Frameworks as H2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation , 2010 .

[39]  Fangyi Liang,et al.  Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation , 2010 .

[40]  Berend Smit,et al.  Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs , 2010 .

[41]  Chongli Zhong,et al.  Comparative Study of Separation Performance of COFs and MOFs for CH4/CO2/H2 Mixtures , 2010 .

[42]  A. Simon‐Masseron,et al.  Adsorption of CO(2), CH(4), and N(2) on zeolitic imidazolate frameworks: experiments and simulations. , 2010, Chemistry.

[43]  E. Pantatosaki,et al.  Atomistic simulation studies on the dynamics and thermodynamics of nonpolar molecules within the zeolite imidazolate framework-8. , 2010, The journal of physical chemistry. B.

[44]  Jianguo Mi,et al.  Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity , 2010 .

[45]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[46]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[47]  J. Caro,et al.  Inside Cover: Molecular Sieve Membrane: Supported Metal–Organic Framework with High Hydrogen Selectivity (Angew. Chem. Int. Ed. 3/2010) , 2010 .

[48]  S. Deng,et al.  Structural Stability of Metal Organic Framework MOF-177 , 2010 .

[49]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[50]  Rees B Rankin,et al.  Adsorption and Diffusion of Light Gases in ZIF-68 and ZIF-70: A Simulation Study , 2009 .

[51]  Yingchun Liu,et al.  Adsorption sites of hydrogen in zeolitic imidazolate frameworks. , 2009, The journal of physical chemistry. B.

[52]  S. Sandler,et al.  Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal-organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[53]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[54]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[55]  Chongli Zhong,et al.  Understanding the Adsorption and Diffusion of Carbon Dioxide in Zeolitic Imidazolate Frameworks: A Molecular Simulation Study , 2009 .

[56]  T. Yildirim,et al.  Methane Sorption in Nanoporous Metal−Organic Frameworks and First-Order Phase Transition of Confined Methane , 2009 .

[57]  S. Kaskel,et al.  High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3 , 2008 .

[58]  T. Vlugt,et al.  Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. , 2008, Journal of chemical theory and computation.

[59]  T. Yildirim,et al.  Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes , 2008 .

[60]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[61]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[62]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[63]  David S. Sholl,et al.  Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations , 2007 .

[64]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[65]  C. Pantano,et al.  On Inverse Adsorption Chromatography. 2. Determination of Isotherms and Heats of Adsorption as well as Energy Distributions of Adsorption Sites , 2007 .

[66]  Sanyue Wang,et al.  Comparative Molecular Simulation Study of Methane Adsorption in Metal−Organic Frameworks , 2007 .

[67]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[68]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[69]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[70]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[71]  A. Celzard,et al.  Preparing a Suitable Material Designed for Methane Storage: A Comprehensive Report , 2005 .

[72]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[73]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[74]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[75]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[76]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[77]  Anthony L. Spek,et al.  Journal of , 1993 .

[78]  S. Sircar,et al.  Heat of Adsorption , 2002 .

[79]  David S. Sholl,et al.  Atomistic Simulations of CO2 and N2 Adsorption in Silica Zeolites: The Impact of Pore Size and Shape† , 2002 .

[80]  I. R. Mcdonald,et al.  NpT-ensemble Monte Carlo calculations for binary liquid mixtures , 2002 .

[81]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[82]  Timothy D. Burchell,et al.  Low Pressure Storage of Natural Gas for Vehicular Applications , 2000 .

[83]  M. Heuchel,et al.  Adsorption of CH4−CF4 Mixtures in Silicalite: Simulation, Experiment, and Theory , 1997 .

[84]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[85]  J. A. Schwarz,et al.  Adsorption near ambient temperatures of methane, carbon tetrafluoride, and sulfur hexafluoride on commercial activated carbons , 1995 .

[86]  Randall Q. Snurr,et al.  Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions , 1993 .

[87]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[88]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[89]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[90]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[91]  E. Ippoliti Parallel Algorithms for Short-range Molecular Dynamics , 2011 .

[92]  B. Smit,et al.  Molecular Simulation Studies of Separation of CO 2 / N 2 , CO 2 / CH 4 , and CH 4 / N 2 by ZIFs , 2010 .

[93]  David Baker,et al.  Protein-protein docking with backbone flexibility. , 2007, Journal of molecular biology.

[94]  P. Tamayo,et al.  Parallel Algorithms for Short-range Molecular Dynamics , 1995 .

[95]  L. Czepirski,et al.  Virial-type thermal equation of gas-solid adsorption , 1989 .

[96]  W. A. Goddard,et al.  a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations , 2022 .