OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES

Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 × 104 K and observed peak luminosities of Mg = −18.3 and −20.4 (νLν = 5 × 1042, 4 × 1043 erg s−1, in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs.

[1]  S. Fliescher,et al.  The Pierre Auger Collaboration , 2011 .

[2]  R. Nichol,et al.  SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE , 2011, 1110.5517.

[3]  P. Esquej,et al.  Long-term AGN variability and the case of GSN 069 , 2011, 1106.3507.

[4]  R. Nichol,et al.  NTT and NOT spectroscopy of SDSS-II supernovae , 2010, 1011.5869.

[5]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[6]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[7]  E. Quataert,et al.  Spectroscopic Signatures of the Tidal Disruption of Stars by Massive Black Holes , 2010, 1008.4131.

[8]  M. Eracleous,et al.  A TIDAL DISRUPTION FLARE IN A1689 FROM AN ARCHIVAL X-RAY SURVEY OF GALAXY CLUSTERS , 2010, 1008.4140.

[9]  S. Anderson,et al.  MULTIWAVELENGTH OBSERVATIONS OF RADIO-QUIET QUASARS WITH WEAK EMISSION LINES , 2010, 1007.5058.

[10]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[11]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[12]  R. Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[13]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[14]  W. M. Wood-Vasey,et al.  PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma , 2009, 0911.2002.

[15]  D. York,et al.  OPTICALLY SELECTED BL LACERTAE CANDIDATES FROM THE SLOAN DIGITAL SKY SURVEY DATA RELEASE SEVEN , 2009, 0911.0423.

[16]  T. Boeker Nuclear Star Clusters Across the Hubble Sequence , 2007, 0708.1093.

[17]  F. Macchetto The impact of HST on European astronomy , 2010 .

[18]  Adam G. Riess,et al.  TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.

[19]  J. Anderson,et al.  Comparisons of the radial distributions of core‐collapse supernovae with those of young and old stellar populations★ , 2009, 0907.0034.

[20]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[21]  M. Bureau,et al.  The SAURON project - XIII. SAURON-GALEX study of early-type galaxies: the ultraviolet colour-magnitude relations and Fundamental Planes , 2009, 0906.3318.

[22]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[23]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[24]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[25]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[26]  M. Dopita,et al.  NTT, SPITZER, AND CHANDRA SPECTROSCOPY OF SDSSJ095209.56+214313.3: THE MOST LUMINOUS CORONAL-LINE SUPERNOVA EVER OBSERVED, OR A STELLAR TIDAL DISRUPTION EVENT? , 2009, 0902.3248.

[27]  M. Salvato,et al.  A candidate tidal disruption event in the Galaxy cluster Abell 3571 , 2009, 0901.3357.

[28]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[29]  A. Pastorello,et al.  SN 2006gy: WAS IT REALLY EXTRAORDINARY? , 2008, 0810.0635.

[30]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[31]  S. Rosswog,et al.  THE STAR INGESTING LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2008, 0808.3847.

[32]  J. Greene,et al.  GALAXIES CORRELATING WITH ULTRA-HIGH ENERGY COSMIC RAYS , 2008, 0806.3470.

[33]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[34]  D. Gadotti Structural properties of pseudo-bulges, classical bulges and elliptical galaxies: a Sloan Digital Sky Survey perspective , 2008, 0810.1953.

[35]  K. Dawson,et al.  DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE HUBBLE SPACE TELESCOPE , 2008, 0809.1648.

[36]  J. Anderson,et al.  Constraints on core-collapse supernova progenitors from correlations with Hα emission , 2008, 0809.0236.

[37]  S. B. Cenko,et al.  DISCOVERY OF THE ULTRA-BRIGHT TYPE II-L SUPERNOVA 2008es , 2008, 0808.2812.

[38]  Adam A. Miller,et al.  THE EXCEPTIONALLY LUMINOUS TYPE II-LINEAR SUPERNOVA 2008es , 2008, 0808.2193.

[39]  James J. Beatty,et al.  Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei , 2008 .

[40]  D. Berk,et al.  Ultraviolet Light Curves of Supernovae with Swift Uvot , 2008, 0803.1265.

[41]  G. Farrar,et al.  GIANT AGN FLARES AND COSMIC RAY BURSTS , 2008, 0802.1074.

[42]  V. Belokurov,et al.  Light and motion in SDSS Stripe 82: The catalogues , 2008, 0801.4894.

[43]  F. Yuan,et al.  Astronomical Image Subtraction by Cross-Convolution , 2008, 0801.0336.

[44]  P. Merluzzi,et al.  The SDSS-GALEX viewpoint of the truncated red sequence in field environments at z 0 , 2007, 0707.2361.

[45]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[46]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[47]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[48]  W C Brown,et al.  Correlation of the highest-energy cosmic rays with nearby extragalactic objects. , 2007, Science.

[49]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[50]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[51]  L. Antonelli,et al.  The multicolored landscape of compact objects and their explosive Origins : Cefalù 2006 : Cefalù, Sicily, 11-18 and 19-24 June 2006 , 2007 .

[52]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[53]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[54]  David Schiminovich,et al.  Statistical Properties of the GALEX-SDSS Matched Source Catalogs, and Classification of the UV Sources , 2006, astro-ph/0611926.

[55]  M. Bernardi,et al.  On the Inconsistency between the Black Hole Mass Function Inferred from M•-σ and M•-L Correlations , 2006, astro-ph/0609297.

[56]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[57]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[58]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[59]  S. Gezari,et al.  Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole , 2006, astro-ph/0612069.

[60]  R. Quimby Supernova 2006gy in NGC 1260 , 2006 .

[61]  L. Ho,et al.  Stellar Populations in the Nuclei of Late-Type Spiral Galaxies , 2006, astro-ph/0604138.

[62]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[63]  Dan Maoz,et al.  The Murmur of the Sleeping Black Hole: Detection of Nuclear Ultraviolet Variability in LINER Galaxies , 2005, astro-ph/0502347.

[64]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[65]  L. Ho,et al.  Masses of Star Clusters in the Nuclei of Bulgeless Spiral Galaxies , 2004, astro-ph/0409216.

[66]  Alexander G. Gray,et al.  EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.

[67]  J. Brinchmann,et al.  Present-Day Growth of Black Holes and Bulges: The Sloan Digital Sky Survey Perspective , 2004, astro-ph/0406218.

[68]  S. Mahadevan,et al.  Tidal Disruption of a Star by a Black Hole: Observational Signature , 2004, astro-ph/0404256.

[69]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[70]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[71]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[72]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[73]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[74]  M. Turatto,et al.  SN 1999E: another piece in the supernova—gamma-ray burst connection puzzle , 2002, astro-ph/0211432.

[75]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[76]  D. Richstone,et al.  The Cosmic Density of Massive Black Holes from Galaxy Velocity Dispersions , 2002, astro-ph/0210573.

[77]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[78]  D. Schlegel,et al.  The type IIn supernova 1995G: interaction with the circumstellar medium , 2002 .

[79]  E. Ofek,et al.  SDSS J124602.54+011318.8: A Highly Variable Active Galactic Nucleus, Not an Orphan Gamma‐Ray Burst Afterglow , 2002 .

[80]  D. Lamb,et al.  SDSS J124602.54 + 011318.8: A Highly Luminous Optical Transient at z = 0.385 , 2001, astro-ph/0111054.

[81]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[82]  M. Gilfanov,et al.  Lighthouses of the universe : the most luminous celestial objects and their use for cosmology : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-10 August 2001 , 2002 .

[83]  N. Caon,et al.  A Correlation between Galaxy Light Concentration and Supermassive Black Hole Mass , 2001, astro-ph/0111152.

[84]  D. Lamb,et al.  Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105511.

[85]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[86]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[87]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[88]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[89]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[90]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[91]  Luis C. Ho,et al.  The Spectral Energy Distributions of Low-Luminosity Active Galactic Nuclei , 1998, astro-ph/9905012.

[92]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[93]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[94]  Y. Taniguchi,et al.  Where Is the Coronal Line Region in Active Galactic Nuclei? , 1998, astro-ph/9802152.

[95]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[96]  A. Loeb,et al.  Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole , 1997, astro-ph/9703079.

[97]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[98]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[99]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[100]  Mark R. Morris,et al.  The center of the galaxy , 1989 .

[101]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[102]  B. Delabre,et al.  Eso's Multimode Instrument For The Nasmyth Focus Of The 3.5 M New Technology Telescope , 1986, Astronomical Telescopes and Instrumentation.

[103]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[104]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[105]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[106]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[107]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[108]  J. Owens,et al.  Optical refractive index of air: dependence on pressure, temperature and composition. , 1967, Applied optics.