Data Mining for Marketing

This paper gives a brief insight about data mining, its process and the various techniques used for it in the field of marketing. Data mining is the process of extracting hidden valuable information from the data in given data sets .In this paper cross industry standard procedure for data mining is explained along with the various techniques used for it. With growing volume of data every day, the need for data mining in marketing is also increasing day by day. It is a powerful technology to help companies focus on the most important information in their data warehouses. Data mining is actually the process of collecting data from different sources and then interpreting it and finally converting it into useful information which helps in increasing the revenue, curtailing costs thereby providing a competitive edge to the organisation.

[1]  Fulvio Castellacci,et al.  The technology clubs: the distribution of knowledge across nations , 2008 .

[2]  Paolo Avesani,et al.  Trust-aware recommender systems , 2007, RecSys '07.

[3]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[4]  Wei Chen,et al.  Social network collaborative filtering framework and online trust factors: A case study on Facebook , 2010, 2010 Fifth International Conference on Digital Information Management (ICDIM).

[5]  Ramesh R. Sarukkai,et al.  Link prediction and path analysis using Markov chains , 2000, Comput. Networks.

[6]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[7]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[8]  Dirk Van den Poel,et al.  Constrained optimization of data-mining problems to improve model performance: A direct-marketing application , 2005, Expert Syst. Appl..

[9]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[10]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[11]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[12]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[13]  B. Yegnanarayana,et al.  Artificial Neural Networks , 2004 .

[14]  Lei Shi,et al.  On the Compression of Markov Prediction Model , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[15]  Thomas Sandholm,et al.  Global budgets for local recommendations , 2010, RecSys '10.

[16]  Shu-Hsien Liao,et al.  Mining customer knowledge for electronic catalog marketing , 2004, Expert Syst. Appl..

[17]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[18]  Simon Fong,et al.  Real-time business intelligence system architecture with stream mining , 2010, 2010 Fifth International Conference on Digital Information Management (ICDIM).

[19]  Lun-Ping Hung,et al.  A personalized recommendation system based on product taxonomy for one-to-one marketing online , 2005, Expert Syst. Appl..

[20]  Y. Ohsawa,et al.  Chance Discovery By Stimulated Groups Of People. Application To Understanding Consumption Of Rare Food , 2002 .

[21]  James T. Kwok,et al.  Mining customer product ratings for personalized marketing , 2003, Decis. Support Syst..

[22]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[23]  Peter S. Fader,et al.  An Exploratory Look at Supermarket Shopping Paths , 2005 .

[24]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[25]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[26]  Patrick Gallinari,et al.  Predicting most rated items in Weekly Recommendation with temporal regression , 2010, CAMRa '10.

[27]  R. Brodie,et al.  Understanding contemporary marketing: Development of a classification scheme , 1997 .

[28]  Mu-Chen Chen,et al.  Mining changes in customer behavior in retail marketing , 2005, Expert Syst. Appl..

[29]  Christian Homburg,et al.  Understanding Customer Value in Business-to-Business Relationships , 2005 .

[30]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[31]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[32]  Jinyan Li,et al.  Efficient mining of emerging patterns: discovering trends and differences , 1999, KDD '99.

[33]  Douglas Steinley,et al.  Local optima in K-means clustering: what you don't know may hurt you. , 2003, Psychological methods.

[34]  Saharon Rosset,et al.  Customer Lifetime Value Models for Decision Support , 2003, Data Mining and Knowledge Discovery.

[35]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[36]  Tianyi Jiang,et al.  Segmenting Customers from Population to Individuals: Does 1-to-1 Keep Your Customers Forever? , 2006, IEEE Transactions on Knowledge and Data Engineering.

[37]  Dirk Van den Poel,et al.  Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models , 2006, Eur. J. Oper. Res..

[38]  Helmuth Späth,et al.  Algorithm 39 Clusterwise linear regression , 1979, Computing.

[39]  Bin Zhang Regression clustering , 2003, Third IEEE International Conference on Data Mining.

[40]  Jian Pei,et al.  Data Mining: Concepts and Techniques, 3rd edition , 2006 .

[41]  G. Maddala,et al.  Cross-country growth regressions: problems of heterogeneity, stability and interpretation , 2000 .

[42]  Naohiro Matsumura Modeling Influence Diffusion in Human Society , 2006, Chance Discoveries in Real World Decision Making.

[43]  Fernando Díez,et al.  Simple time-biased KNN-based recommendations , 2010, CAMRa '10.

[44]  Cheng Che Analysis of data mining , 2014 .

[45]  Yukio Ohsawa,et al.  Data crystallization applied for designing new products , 2007 .

[46]  Nicolás Marín,et al.  TBAR: An efficient method for association rule mining in relational databases , 2001, Data Knowl. Eng..

[47]  S. Hunt,et al.  The Commitment-Trust Theory of Relationship Marketing , 1994 .

[48]  Michalis Vazirgiannis,et al.  Web path recommendations based on page ranking and Markov models , 2005, WIDM '05.

[49]  Warren R. Greiff,et al.  A theory of term weighting based on exploratory data analysis , 1998, SIGIR '98.

[50]  Dirk Thorleuchter,et al.  Extracting Consumers Needs for New Products , 2010 .

[51]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[52]  Joyce Jackson,et al.  Data Mining; A Conceptual Overview , 2002, Commun. Assoc. Inf. Syst..

[53]  Peter S. Fader,et al.  Path Data in Marketing: An Integrative Framework and Prospectus for Model-Building , 2007, Mark. Sci..

[54]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[55]  Paul D. Allison,et al.  Logistic Regression Using the SAS System : Theory and Application , 1999 .

[56]  Gopal K Gupta,et al.  Introduction to Data Mining with Case Studies , 2011 .

[57]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[58]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.

[59]  Yufei Yuan,et al.  Managing business-to-business relationships throughout the e-commerce procurement life cycle , 2000, Internet Res..

[60]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[61]  Hsinchun Chen,et al.  Exploring the use of concept spaces to improve medical information retrieval , 2000, Decis. Support Syst..

[62]  Farshid Vahid Clustering Regression Functions in a Panel , 2000 .

[63]  Ke Wang,et al.  Growing decision trees on support-less association rules , 2000, KDD '00.

[64]  Kevin Knight,et al.  Connectionist ideas and algorithms , 1990, CACM.

[65]  Efraim Turban,et al.  Decision Support and Business Intelligence Systems (8th Edition) , 2006 .

[66]  Piew Datta,et al.  Targeting Customers with Statistical and Data-Mining Techniques , 2001 .

[67]  W. Reinartz,et al.  The Impact of Customer Relationship Characteristics on Profitable Lifetime Duration , 2003 .

[68]  YongSeog Kim,et al.  Toward a successful CRM: variable selection, sampling, and ensemble , 2006, Decis. Support Syst..

[69]  Michael J. A. Berry,et al.  Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management , 2004 .

[70]  Dirk Thorleuchter,et al.  A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies , 2010 .

[71]  Dirk Thorleuchter,et al.  Vertrauliche Verarbeitung staatlich eingestufter Information – die Informationstechnologie im Geheimschutz , 2008, Informatik-Spektrum.

[72]  Hsinchun Chen,et al.  A graph-based recommender system for digital library , 2002, JCDL '02.

[73]  D. Rubinfeld,et al.  Econometric models and economic forecasts , 2002 .

[74]  Hao Wang,et al.  An effective method to discover emerging chance in chance discovery , 2010, 9th IEEE International Conference on Cognitive Informatics (ICCI'10).

[75]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[76]  Sang-Chan Park,et al.  Visualization method for customer targeting using customer map , 2005, Expert Syst. Appl..

[77]  Min Zhao,et al.  Online evolutionary collaborative filtering , 2010, RecSys '10.

[78]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[79]  Jun Hong,et al.  Using Markov Chains for Link Prediction in Adaptive Web Sites , 2002, Soft-Ware.

[80]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[81]  G. Loukidis,et al.  SIAM International Conference on Data Mining (SDM) , 2015 .

[82]  Dirk Thorleuchter,et al.  Mining ideas from textual information , 2010, Expert Syst. Appl..

[83]  Zengyou He,et al.  Mining class outliers: concepts, algorithms and applications in CRM , 2004, Expert Syst. Appl..

[84]  Opher Etzion,et al.  e-CLV: A Modeling Approach for Customer Lifetime Evaluation in e-Commerce Domains, with an Application and Case Study for Online Auction , 2005, Inf. Syst. Frontiers.

[85]  George Kapetanios,et al.  Cluster analysis of panel data sets using non-standard optimisation of information criteria , 2006 .

[86]  Stephen D. Bay,et al.  Detecting change in categorical data: mining contrast sets , 1999, KDD '99.

[87]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[88]  Wynne Hsu,et al.  Integrating Classification and Association Rule Mining , 1998, KDD.

[89]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[90]  Tomás Bayón,et al.  The chain from customer satisfaction via word-of-mouth referrals to new customer acquisition , 2007 .

[91]  D. Micci-Barreca,et al.  Improving Tax Administration with Data Mining , 2004 .

[92]  Dirk Thorleuchter,et al.  Mining Innovative Ideas to Support New Product Research and Development , 2010 .

[93]  Yiting Peng,et al.  Study and Application of Web-based Data Mining in E-Business , 2007 .

[94]  Katsutoshi Yada,et al.  String analysis technique for shopping path in a supermarket , 2011, Journal of Intelligent Information Systems.

[95]  Steven N. Durlauf,et al.  Multiple regimes and cross‐country growth behaviour , 1995 .

[96]  Jiawei Han,et al.  CPAR: Classification based on Predictive Association Rules , 2003, SDM.

[97]  Sunil Gupta,et al.  Brand Choice, Purchase Incidence, and Segmentation: An Integrated Modeling Approach , 1992 .

[98]  Aidong Zhang,et al.  WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases , 1998, VLDB.

[99]  Yukio Ohsawa,et al.  A shift of mind - Introducing a concept creation model , 2009, Inf. Sci..

[100]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[101]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[102]  Saul I. Gass,et al.  Singular value decomposition in AHP , 2004, Eur. J. Oper. Res..

[103]  Wagner A. Kamakura,et al.  Defection Detection: Measuring and Understanding the Predictive Accuracy of Customer Churn Models , 2006 .

[104]  Kevin Wilkinson,et al.  Data integration flows for business intelligence , 2009, EDBT '09.

[105]  Andreas Hotho,et al.  A Brief Survey of Text Mining , 2005, LDV Forum.

[106]  James Allan,et al.  Automatic structuring and retrieval of large text files , 1994, CACM.

[107]  Shan Ling Pan,et al.  Using e-CRM for a unified view of the customer , 2003, CACM.

[108]  D. Aaker,et al.  Chapter 2 – Marketing research , 2004 .

[109]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[110]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[111]  Håkan Håkansson,et al.  Corporate Technological Behaviour: Co-Operation and Networks , 1989 .

[112]  Aws Saad Shawkat,et al.  Content based data retrieval on KNN- classification and cluster analysis for data mining , 2012 .

[113]  J. Su Convergence clubs among 15 OECD countries , 2003 .

[114]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[115]  Kristof Coussement,et al.  Integrating the voice of customers through call center emails into a decision support system for churn prediction , 2008, Inf. Manag..

[116]  Yong-Hyuk Kim,et al.  Multicampaign assignment problem , 2006, IEEE Transactions on Knowledge and Data Engineering.

[117]  A. K. Pujari,et al.  Data Mining Techniques , 2006 .

[118]  R. A. Moeller,et al.  Distributed data warehousing using Web technology , 2001 .

[119]  Karen Sparck Jones A statistical interpretation of term specificity and its application in retrieval , 1972 .

[120]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[121]  Andrew Kusiak,et al.  Mining Authoritativeness of Collaborative Innovation Partners , 2010, Int. J. Comput. Commun. Control.

[122]  William M. Spears,et al.  A Compression Algorithm for Probability Transition Matrices , 1998, SIAM J. Matrix Anal. Appl..