Monotone control systems

Monotone systems constitute one of the most important classes of dynamical systems used in mathematical biology modeling. The objective of this paper is to extend the notion of monotonicity to systems with inputs and outputs, a necessary first step in trying to understand interconnections, especially including feedback loops, built up out of monotone components. Basic definitions and theorems are provided, as well as an application to the study of a model of one of the cell's most important subsystems.

[1]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[2]  Hiroshi Matano,et al.  Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems , 1984 .

[3]  Mathukumalli Vidyasagar,et al.  Cross-Positive Matrices , 1970 .

[4]  Eduardo D. Sontag Asymptotic amplitudes and Cauchy gains: a small-gain principle and an application to inhibitory biological feedback , 2002, Syst. Control. Lett..

[5]  Eduardo D. Sontag A remark on the converging-input converging-state property , 2003, IEEE Trans. Autom. Control..

[6]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[7]  S. Smale On the differential equations of species in competition , 1976, Journal of mathematical biology.

[8]  David Angeli,et al.  Multistability in monotone I/O systems , 2004 .

[9]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[10]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[11]  Eduardo Sontag Remarks on stabilization and input-to-state stability , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[12]  M. E. Valcher Controllability and reachability criteria for discrete time positive systems , 1996 .

[13]  Dirk Aeyels,et al.  Stabilization of positive linear systems , 2001, Syst. Control. Lett..

[14]  Dirk Aeyels,et al.  Stability properties of equilibria of classes of cooperative systems , 2001, IEEE Trans. Autom. Control..

[15]  R. M. Redheffer,et al.  Flow-invariant sets and differential inequalities in normed spaces † , 1975 .

[16]  David Angeli,et al.  Small-gain Theorems for Predator-prey Systems , 2003, POSTA.

[17]  David Angeli,et al.  A Feedback Perspective for Chemostat Models with Crowding Effects , 2003, POSTA.

[18]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[19]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[20]  N. Rouche,et al.  Stability Theory by Liapunov's Direct Method , 1977 .

[21]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Herb Kunze,et al.  Monotonicity with respect to closed convex cones II , 2001 .

[23]  Eduardo D. Sontag,et al.  An infinite-time relaxation theorem for differential inclusions , 2001 .

[24]  David Angeli,et al.  A note on multistability and monotone I/O systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[25]  D. Aeyels,et al.  Stability for homogeneous cooperative systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[26]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[27]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[28]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[30]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[31]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[32]  P. Volkmann Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen , 1972 .

[33]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[34]  P. De Leenheer,et al.  Stability results for some classes of cooperative systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[35]  Carlo Piccardi,et al.  Remarks on excitability, stability and sign of equilibria in cooperative systems , 2002, Syst. Control. Lett..

[36]  W. Walter Differential and Integral Inequalities , 1970 .

[37]  S. Rinaldi,et al.  Excitability, stability, and sign of equilibria in positive linear systems , 1991 .

[38]  David Angeli,et al.  Multi-stability in monotone input/output systems , 2003, Syst. Control. Lett..

[39]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[40]  Ekkehard W. Sachs,et al.  Positive control for quasimonotone systems of differential equations , 1981 .