Decision Evaluation Methods Under Uncertainty and Imprecision

After a brief review of recent models of uncertainty and imprecision based on fuzzy set, possibility and evidence theories, some techniques to incorporate non-probabilistic aspects of imperfect information in the classical Subjective Expected Utility (SEU) approach are described. It results in a unified framework for evaluation criteria as well as proposals for fuzzy set-based refined sensitivity analysis. This paper is in accordance with new trends in decision theory, which question the probabilistic prejudice lying in its foundations, in view of systematic deviations from the SEU model in experiments.

[1]  G. Choquet Theory of capacities , 1954 .

[2]  G. L. S. Shackle,et al.  Decision Order and Time in Human Affairs , 1962 .

[3]  Cedric A. B. Smith,et al.  Personal Probability and Statistical Analysis , 1965 .

[4]  L. Zadeh Probability measures of Fuzzy events , 1968 .

[5]  Michio Sugeno,et al.  Fuzzy Measure and Fuzzy Integral , 1972 .

[6]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[7]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[8]  Huibert Kwakernaak,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, Autom..

[9]  Lotfi A. Zadeh,et al.  PRUF—a meaning representation language for natural languages , 1978 .

[10]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[11]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[12]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[13]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[14]  Michael L. Donnell,et al.  Fuzzy Decision Analysis , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  J. Adamo Fuzzy decision trees , 1980 .

[16]  Anthony N. S. Freeling Fuzzy Sets and Decision Analysis , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[18]  Andrew P. Sage,et al.  Sensitivity Analysis in Systems for Planning and Decision Support , 1981 .

[19]  Philippe Smets,et al.  The degree of belief in a fuzzy event , 1981, Inf. Sci..

[20]  D. Dubois,et al.  Additions of interactive fuzzy numbers , 1981 .

[21]  E. Klement Construction of Fuzzy σ-algebras using triangular norms , 1982 .

[22]  P. Smets Probability of a fuzzy event: An axiomatic approach , 1982 .

[23]  Didier Dubois,et al.  A class of fuzzy measures based on triangular norms , 1982 .

[24]  S. Weber Decomposable Measures and Measures of Information for Crisp and Fuzzy Sets , 1983 .

[25]  Didier Dubois,et al.  Modèles mathématiques de l'imprécis et de l'incertain en vue d'applications aux techniques d'aide à la décision , 1983 .

[26]  Ronald R. Yager,et al.  Probabilities from fuzzy observations , 1984, Inf. Sci..

[27]  Didier Dubois,et al.  Evidence measures based on fuzzy information , 1985, Autom..

[28]  D. Dubois,et al.  Recent models of uncertainty and imprecision as a basis for decision theory:towards less normative frameworks , 1986 .

[29]  D. Dubois Generalized probabilistic independence and its implications for utility , 1986 .

[30]  James C. Bezdek,et al.  Analysis of fuzzy information , 1987 .

[31]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[32]  R. Yager Optimal Alternative Selection in The Face of Evidential Knowledge , 1987 .

[33]  A. Chateauneuf Uncertainty Aversion and Risk Aversion in Models with Nonadditive Probabilities , 1988 .