Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains

Abstract We investigate interface problems in nonlocal diffusion and demonstrate how to reformulate and generalize the classical treatment of interface problems in the presence of nonlocal interactions. Through formal derivations, we show that nonlocal diffusion interface problems converge to their classical local counterparts, in the limit of vanishing nonlocality. A central focus of this paper is local/nonlocal interface problems, or interface problems with sharp transitions between local and nonlocal domains. Such problems can be cast as instances of a nonlocal interface problem, with a finite horizon in certain regions and a vanishing horizon in other regions. We derive a local/nonlocal interface problem and utilize conservation principles to obtain local/nonlocal interface conditions. Comparisons between nonlocal, local, and local/nonlocal interface problems are presented, analytically and numerically, with a focus on multiscale aspects of nonlocal models induced by their inherent length scales.

[1]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[2]  Gilles Lubineau,et al.  Coupling of nonlocal and local continuum models by the Arlequin approach , 2012 .

[3]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[4]  José M. Mazón,et al.  Nonlocal Diffusion Problems , 2010 .

[5]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[6]  Qiang Du,et al.  A New Approach for a Nonlocal, Nonlinear Conservation Law , 2012, SIAM J. Appl. Math..

[7]  Christian Rey,et al.  A morphing strategy to couple non-local to local continuum mechanics , 2012 .

[8]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[9]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[10]  Youn Doh Ha,et al.  ADAPTIVE REFINEMENT AND MULTISCALEMODELING IN 2D PERIDYNAMICS , 2011 .

[11]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[12]  Coarsening in an integro-differential model of phase transitions , 2000, European Journal of Applied Mathematics.

[13]  Erdogan Madenci,et al.  Coupling of peridynamic theory and the finite element method , 2010 .

[14]  Paul C. Fife,et al.  Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions , 2003 .

[15]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[16]  Erdogan Madenci,et al.  Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot , 2012 .

[17]  E. Kröner,et al.  Elasticity theory of materials with long range cohesive forces , 1967 .

[18]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[19]  Dominik Rogula,et al.  Introduction to Nonlocal Theory of Material Media , 1982 .

[20]  E. Emmrich,et al.  On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity , 2007 .

[21]  Ted Belytschko,et al.  Finite Elements, An Introduction , 1982 .

[22]  Brian Van Koten,et al.  Analysis of Energy-Based Blended Quasi-Continuum Approximations , 2011, SIAM J. Numer. Anal..

[23]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[24]  Li Tian,et al.  A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models , 2013, Math. Comput..

[25]  Serge Prudhomme,et al.  A force-based coupling scheme for peridynamics and classical elasticity , 2013 .

[26]  Max Gunzburger,et al.  Bridging Methods for Atomistic-to-Continuum Coupling and Their Implementation , 2009 .

[27]  I. Kunin,et al.  Elastic Media with Microstructure I: One-Dimensional Models , 1982 .

[28]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[29]  Pablo Seleson,et al.  Peridynamic Multiscale Models for the Mechanics of Materials: Constitutive Relations, Upscaling from Atomistic Systems, and Interface Problems , 2010 .

[30]  Burak Aksoylu,et al.  Variational theory and domain decomposition for nonlocal problems , 2009, Appl. Math. Comput..

[31]  Peter W. Bates,et al.  An Integrodifferential Model for Phase Transitions: Stationary Solutions in Higher Space Dimensions , 1999 .

[32]  Richard B. Lehoucq,et al.  CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONS ON BOUNDED DOMAINS , 2011 .

[33]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[34]  Jifeng Xu,et al.  Peridynamic Analysis of Impact Damage in Composite Laminates , 2008 .

[35]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[36]  M. T. Barlow,et al.  Non-local dirichlet forms and symmetric jump processes , 2006 .

[37]  Brittney Hinds,et al.  Dirichlet's principle and wellposedness of solutions for a nonlocal p-Laplacian system , 2012, Appl. Math. Comput..

[38]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[39]  Q. Du,et al.  MATHEMATICAL ANALYSIS FOR THE PERIDYNAMIC NONLOCAL CONTINUUM THEORY , 2011 .

[40]  Richard B. Lehoucq,et al.  A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..

[41]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[42]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[43]  Peter W. Bates,et al.  A Discrete Convolution Model¶for Phase Transitions , 1999 .

[44]  Burak Aksoylu,et al.  Results on Nonlocal Boundary Value Problems , 2010 .

[45]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[46]  José M. Mazón,et al.  A Nonlocal p-Laplacian Evolution Equation with Nonhomogeneous Dirichlet Boundary Conditions , 2009, SIAM J. Math. Anal..

[47]  Jung-Wuk Hong,et al.  A coupling approach of discretized peridynamics with finite element method , 2012 .