Modal identification of linear non-proportionally damped systems by wavelet transform

A time-frequency identification technique based on wavelet transform is formulated and applied to free-decay responses of linear systems with non-proportional viscous damping. The Cauchy mother wavelet is used. Frequencies, modal damping ratios and complex mode shapes are identified from output-only free vibration signals. This identification technique has also shown to be effective when the (non-proportional) damping is significant.

[1]  Sondipon Adhikari,et al.  IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING , 2001 .

[2]  W. Staszewski IDENTIFICATION OF DAMPING IN MDOF SYSTEMS USING TIME-SCALE DECOMPOSITION , 1997 .

[3]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[4]  J. Slavič,et al.  ENHANCEMENTS TO THE CONTINUOUS WAVELET TRANSFORM FOR DAMPING IDENTIFICATIONS ON SHORT SIGNALS , 2004 .

[5]  Sondipon Adhikari,et al.  Optimal complex modes and an index of damping non-proportionality , 2004 .

[6]  Etienne Balmes,et al.  New Results on the Identification of Normal Modes from Experimental Complex Modes , 1994 .

[7]  J. Slavič,et al.  Damping identification using a continuous wavelet transform: application to real data , 2003 .

[8]  Daniel Rixen,et al.  Théorie des vibrations : application à la dynamique des structures , 1993 .

[9]  S. Adhikari,et al.  Identification of damping: Part 1, viscous damping , 2001 .

[10]  B. Torrésani,et al.  Remarques sur l'adaptativité des représentations temps- fréquence , 2003 .

[11]  W. Staszewski IDENTIFICATION OF NON-LINEAR SYSTEMS USING MULTI-SCALE RIDGES AND SKELETONS OF THE WAVELET TRANSFORM , 1998 .

[12]  C F Beards,et al.  STRUCTURAL VIBRATION: ANALYSIS AND DAMPING , 1996 .

[13]  C. Geiss,et al.  An introduction to probability theory , 2008 .

[14]  Atul Bhaskar,et al.  Taussky's theorem, symmetrizability and modal analysis revisited , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[16]  T. Le,et al.  Continuous wavelet transform for modal identification using free decay response , 2004 .

[17]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis , 1998 .

[18]  C. Ventura,et al.  MODAL ANALYSIS OF NON-CLASSICALLY DAMPED LINEAR SYSTEMS , 1986 .

[19]  Bruno Torrésani,et al.  Analyse continue par ondelettes , 1995 .

[20]  Thien-Phu Le Auscultation dynamique des structures à l'aide de l'analyse continue en ondelettes , 2003 .

[21]  李幼升,et al.  Ph , 1989 .

[22]  Minh Ningh Ta Analyse modale par sous-espaces et par la transformée en ondelettes , 2005 .

[23]  Pierre Argoul,et al.  INSTANTANEOUS INDICATORS OF STRUCTURAL BEHAVIOUR BASED ON THE CONTINUOUS CAUCHY WAVELET ANALYSIS , 2003 .

[24]  J. Lardies,et al.  Modal parameter estimation based on the wavelet transform of output data , 2004 .

[25]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[26]  Massimo Ruzzene,et al.  NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .

[27]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[28]  R. Rayleigh The Theory of Sound, Two Volumes In One , 1945 .