Modal identification of linear non-proportionally damped systems by wavelet transform
暂无分享,去创建一个
[1] Sondipon Adhikari,et al. IDENTIFICATION OF DAMPING: PART 1, VISCOUS DAMPING , 2001 .
[2] W. Staszewski. IDENTIFICATION OF DAMPING IN MDOF SYSTEMS USING TIME-SCALE DECOMPOSITION , 1997 .
[3] Richard Kronland-Martinet,et al. Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.
[4] J. Slavič,et al. ENHANCEMENTS TO THE CONTINUOUS WAVELET TRANSFORM FOR DAMPING IDENTIFICATIONS ON SHORT SIGNALS , 2004 .
[5] Sondipon Adhikari,et al. Optimal complex modes and an index of damping non-proportionality , 2004 .
[6] Etienne Balmes,et al. New Results on the Identification of Normal Modes from Experimental Complex Modes , 1994 .
[7] J. Slavič,et al. Damping identification using a continuous wavelet transform: application to real data , 2003 .
[8] Daniel Rixen,et al. Théorie des vibrations : application à la dynamique des structures , 1993 .
[9] S. Adhikari,et al. Identification of damping: Part 1, viscous damping , 2001 .
[10] B. Torrésani,et al. Remarques sur l'adaptativité des représentations temps- fréquence , 2003 .
[11] W. Staszewski. IDENTIFICATION OF NON-LINEAR SYSTEMS USING MULTI-SCALE RIDGES AND SKELETONS OF THE WAVELET TRANSFORM , 1998 .
[12] C F Beards,et al. STRUCTURAL VIBRATION: ANALYSIS AND DAMPING , 1996 .
[13] C. Geiss,et al. An introduction to probability theory , 2008 .
[14] Atul Bhaskar,et al. Taussky's theorem, symmetrizability and modal analysis revisited , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[15] T. Caughey,et al. Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .
[16] T. Le,et al. Continuous wavelet transform for modal identification using free decay response , 2004 .
[17] Bruno Torrésani,et al. Practical Time-Frequency Analysis , 1998 .
[18] C. Ventura,et al. MODAL ANALYSIS OF NON-CLASSICALLY DAMPED LINEAR SYSTEMS , 1986 .
[19] Bruno Torrésani,et al. Analyse continue par ondelettes , 1995 .
[20] Thien-Phu Le. Auscultation dynamique des structures à l'aide de l'analyse continue en ondelettes , 2003 .
[22] Minh Ningh Ta. Analyse modale par sous-espaces et par la transformée en ondelettes , 2005 .
[23] Pierre Argoul,et al. INSTANTANEOUS INDICATORS OF STRUCTURAL BEHAVIOUR BASED ON THE CONTINUOUS CAUCHY WAVELET ANALYSIS , 2003 .
[24] J. Lardies,et al. Modal parameter estimation based on the wavelet transform of output data , 2004 .
[25] Nuno M. M. Maia,et al. Theoretical and Experimental Modal Analysis , 1997 .
[26] Massimo Ruzzene,et al. NATURAL FREQUENCIES AND DAMPINGS IDENTIFICATION USING WAVELET TRANSFORM: APPLICATION TO REAL DATA , 1997 .
[27] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[28] R. Rayleigh. The Theory of Sound, Two Volumes In One , 1945 .