Particle Acceleration at Interplanetary Shocks

Abstract This paper briefly reviews proton acceleration at interplanetary shocks. This is key to describing the acceleration of heavy ions at interplanetary shocks because wave excitation—and hence particle scattering—at oblique shocks is controlled by the protons and not the heavy ions. Heavy ions behave as test particles, and their acceleration characteristics are controlled by the properties of proton-excited turbulence. As a result, the resonance condition for heavy ions introduces distinctly different signatures in abundance, spectra, and intensity profiles, depending on ion mass and charge. Self-consistent models of heavy-ion acceleration and the resulting fractionation are discussed. This includes discussion of the injection problem and the acceleration characteristics of quasi-parallel and quasi-perpendicular shocks.

[1]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[2]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[3]  Russell A. Howard,et al.  Associations between coronal mass ejections and solar energetic proton events , 1983 .

[4]  Martin A. Lee Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks , 1983 .

[5]  L. Drury,et al.  An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[6]  T. Sanderson,et al.  The energy spectrum of 35‐ to 1600‐keV protons associated with interplanetary shocks , 1984 .

[7]  B. Klecker,et al.  Ionic charge states of N, Ne, Mg, Si and S in solar energetic particle events , 1984 .

[8]  J. Jokipii Rate of energy gain and maximum energy in diffusive shock acceleration , 1987 .

[9]  Berndt Klecker,et al.  The mean ionic charge of silicon in 3HE-rich solar flares , 1987 .

[10]  M. Dryer,et al.  The influence of the large-scale interplanetary shock structure on a low-energy particle event , 1992 .

[11]  Effect of Adiabatic Deceleration on the Focused Transport of Solar Cosmic Rays , 1994, astro-ph/9408056.

[12]  R. Mewaldt,et al.  Measurements of the Ionic Charge States of Solar Energetic Particles Using the Geomagnetic Field , 1995 .

[13]  W. F. Dietrich,et al.  The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon , 1995 .

[14]  J. Mazur,et al.  Charge State Measurements of Solar Energetic Particles Observed with SAMPEX , 1995 .

[15]  D. Reames,et al.  Pitch Angle Diffusion Coefficient in an Extended Quasi-linear Theory , 1995 .

[16]  M. Dryer,et al.  Three Low-Energy Particle Events: Modeling the Influence of the Parent Interplanetary Shock , 1995 .

[17]  Iver H. Cairns,et al.  Interstellar pickup ions and quasi‐perpendicular shocks: Implications for the termination shock and interplanetary shocks , 1996 .

[18]  W. Matthaeus,et al.  The Cosmic Ray Diffusion Tensor in the Heliosphere , 1998 .

[19]  B. Klecker,et al.  The Ionic Charge of Solar Energetic Particles with Energies of 0.3-70 MeV per Nucleon , 1997 .

[20]  M. Kallenrode,et al.  Propagation of particles injected from interplanetary shocks: A black box model and its consequences for acceleration theory and data interpretation , 1997 .

[21]  W. R. Cook,et al.  The Solar Isotope Spectrometer for the Advanced Composition Explorer , 1998 .

[22]  Energetic Particle Events: Efficiency of Interplanetary Shocks as 50 keV < E < 100 MeV Proton Accelerators , 1998 .

[23]  S. M. Krimigis,et al.  The Ultra-Low-Energy Isotope Spectrometer (ULEIS) for the ACE spacecraft , 1998 .

[24]  E. Möbius,et al.  Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth's bow shock revisited , 1999 .

[25]  S. M. Krimigis,et al.  Particle acceleration and sources in the November 1997 solar energetic particle events , 1999 .

[26]  M. Kallenrode Energetic particle events at traveling interplanetary shocks: modeling between 20 keV and 500 MeV , 1999 .

[27]  A. Tylka,et al.  Effect of proton‐amplified waves on the evolution of solar energetic particle composition in gradual events , 1999 .

[28]  R. Mewaldt,et al.  New observations of heavy‐ion‐rich solar particle events from ACE , 1999 .

[29]  W. Rice,et al.  Particle acceleration at coronal mass ejection driven shocks , 2000 .

[30]  W. Rice,et al.  Particle acceleration and coronal mass ejection driven shocks: A theoretical model , 2000 .

[31]  E. Cliver Solar energetic particles: Acceleration and transport , 2001 .

[32]  A. Tylka,et al.  Modeling Shock-accelerated Solar Energetic Particles Coupled to Interplanetary Alfvén Waves , 2003 .

[33]  R. Mewaldt,et al.  Two components in major solar particle events , 2003 .

[34]  W. Matthaeus,et al.  Nonlinear Collisionless Perpendicular Diffusion of Charged Particles , 2003 .

[35]  S. M. Krimigis,et al.  Evidence for a Suprathermal Seed Population of Heavy Ions Accelerated by Interplanetary Shocks near 1 AU , 2003 .

[36]  W. Rice,et al.  Energetic particle acceleration and transport at coronal mass ejection–driven shocks , 2003 .

[37]  W. Rice,et al.  Particle acceleration and coronal mass ejection driven shocks: Shocks of arbitrary strength , 2003 .

[38]  H. Cane,et al.  A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002 , 2003 .

[39]  W. Matthaeus,et al.  Perpendicular diffusion coefficient for charged particles of arbitrary energy , 2004 .