PFEM–DEM for particle-laden flows with free surface

[1]  Massimiliano Cremonesi,et al.  3D regularized μ(I)-rheology for granular flows simulation , 2019, J. Comput. Phys..

[2]  M. Asai,et al.  Water entry of decelerating spheres simulations using improved ISPH method , 2018, Journal of Hydrodynamics.

[3]  Dimitrios I. Gerogiorgis,et al.  CFD modelling and simulation of drill cuttings transport efficiency in annular bends: Effect of particle sphericity , 2018, Journal of Petroleum Science and Engineering.

[4]  G. González Numerical analysis of particle-laden flows with the finite element method , 2018 .

[5]  S. Meduri,et al.  An efficient runtime mesh smoothing technique for 3D explicit Lagrangian free‐surface fluid flow simulations , 2018, International Journal for Numerical Methods in Engineering.

[6]  Ke Wu,et al.  A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces , 2018, Powder Technology.

[7]  Antonio Gens,et al.  Coupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element Method , 2018, Computers and Geotechnics.

[8]  Wen-jie Xu,et al.  Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method , 2018, Powder Technology.

[9]  S. Hidalgo-Caballero,et al.  The simultaneous discharge of liquid and grains from a silo , 2018, 1801.05747.

[10]  Victor Oancea,et al.  A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid‐structure interaction problems , 2018 .

[11]  Massimiliano Cremonesi,et al.  On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems , 2017 .

[12]  William D. Fullmer,et al.  Clustering instabilities in sedimenting fluid–solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data , 2017, Journal of Fluid Mechanics.

[13]  Jean-Philippe Ponthot,et al.  Free‐slip boundary conditions for simulating free‐surface incompressible flows through the particle finite element method , 2017 .

[14]  Peter J. Ireland,et al.  Improving particle drag predictions in Euler-Lagrange simulations with two-way coupling , 2017, J. Comput. Phys..

[15]  Tarek I. Zohdi,et al.  A modular, partitioned, discrete element framework for industrial grain distribution systems with rotating machinery , 2017, CPM 2017.

[16]  Navid Mostoufi,et al.  Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows , 2016 .

[17]  Falah Alobaid,et al.  A particle–grid method for Euler–Lagrange approach , 2015 .

[18]  Eugenio Oñate,et al.  On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids , 2015 .

[19]  Stefan Radl,et al.  A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions , 2014 .

[20]  Eugenio Oñate,et al.  Lagrangian analysis of multiscale particulate flows with the particle finite element method , 2014 .

[21]  Eugenio Oñate,et al.  Lagrangian formulation for finite element analysis of quasi‐incompressible fluids with reduced mass losses , 2014 .

[22]  Michael H. Scott,et al.  Modeling fluid-structure interaction by the particle finite element method in OpenSees , 2014 .

[23]  Dong Wang,et al.  Particle finite element analysis of large deformation and granular flow problems , 2013 .

[24]  Xiaosong Sun,et al.  Three-dimensional simulation of a solid-liquid flow by the DEM-SPH method , 2013, J. Comput. Phys..

[25]  Markus Uhlmann,et al.  Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction , 2013, 1301.5771.

[26]  S. Luding,et al.  Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation , 2013, 1301.0752.

[27]  S. Sundaresan,et al.  Effective drag law for parcel-based approaches - What can we learn from CFD-DEM? , 2012 .

[28]  Eugenio Oñate,et al.  Improving mass conservation in simulation of incompressible flows , 2012 .

[29]  Paul W. Cleary,et al.  An investigation of the comparative behaviour of alternative contact force models during elastic collisions , 2011 .

[30]  A. Yu,et al.  Discrete particle simulation of particle–fluid flow: model formulations and their applicability , 2010, Journal of Fluid Mechanics.

[31]  Makoto Sueyoshi,et al.  Numerical simulation and experiment on dam break problem , 2010 .

[32]  E. Loth,et al.  An equation of motion for particles of finite Reynolds number and size , 2009 .

[33]  K. Cen,et al.  Effect of particle-particle collision in decaying homogeneous and isotropic turbulence. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Antonia Larese,et al.  Validation of the particle finite element method (PFEM) for simulation of free surface flows , 2008 .

[35]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[36]  Eric Loth,et al.  Drag of non-spherical solid particles of regular and irregular shape , 2008 .

[37]  A. Kendoush,et al.  The virtual mass of an oblate-ellipsoidal bubble , 2007 .

[38]  S. Balachandar,et al.  On the added mass force at finite Reynolds and acceleration numbers , 2007 .

[39]  J. Kuipers,et al.  Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres , 2007 .

[40]  Eugenio Oñate,et al.  Modeling bed erosion in free surface flows by the particle finite element method , 2006 .

[41]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[42]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[43]  Eric Perkins,et al.  A contact algorithm for partitioning N arbitrary sized objects , 2004 .

[44]  Santiago Laín,et al.  Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective , 2003 .

[45]  Olivier Vermorel,et al.  Etude numérique et modélisation de la modulation de la turbulence dans un écoulement de nappe chargée en particules. (Numerical study and modelling of turbulence modulation in a particle laden slab flow) , 2003 .

[46]  J. Bec,et al.  Fractal clustering of inertial particles in random flows , 2003, nlin/0306049.

[47]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[48]  Todd Pugsley,et al.  Simulation and experimental validation of a freely bubbling bed of FCC catalyst , 2003 .

[49]  D. Snider An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows , 2001 .

[50]  D. Drew,et al.  Theory of Multicomponent Fluids , 1998 .

[51]  Yutaka Tsuji,et al.  Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models) , 1998 .

[52]  S. Koshizuka,et al.  Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .

[53]  Said Elghobashi,et al.  On predicting particle-laden turbulent flows , 1994 .

[54]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[55]  Tiow Seng Tan,et al.  An upper bound for conforming Delaunay triangulations , 1992, SCG '92.

[56]  R. Jackson,et al.  Fluid Mechanical Description of Fluidized Beds. The Effect of Distributor Thickness on Convective Instabilities , 1975 .

[57]  T. B. Anderson,et al.  Fluid Mechanical Description of Fluidized Beds. Equations of Motion , 1967 .

[58]  E. O. I. Navarra,et al.  A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems , 2017 .

[59]  Eugenio Oñate,et al.  A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores , 2015, Computational Particle Mechanics.

[60]  Kimmo Berg,et al.  European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) , 2004 .

[61]  Yoshiaki Oka,et al.  MOVING PARTICLE SEMI-IMPLICIT METHOD: FULLY LAGRANGIAN ANALYSIS OF INCOMPRESSIBLE FLOWS , 2000 .

[62]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[63]  J. C. Martin An experimental study of the collapse of liquid column on a rigid horizontal plane , 1952 .