Measured PET Data Characterization with the Negative Binomial Distribution Model

Accurate statistical model of PET measurements is a prerequisite for a correct image reconstruction when using statistical image reconstruction algorithms, or when pre-filtering operations must be performed. Although radioactive decay follows a Poisson distribution, deviation from Poisson statistics occurs on projection data prior to reconstruction due to physical effects, measurement errors, correction of scatter and random coincidences. Modelling projection data can aid in understanding the statistical nature of the data in order to develop efficient processing methods and to reduce noise. This paper outlines the statistical behaviour of measured emission data evaluating the goodness of fit of the negative binomial (NB) distribution model to PET data for a wide range of emission activity values. An NB distribution model is characterized by the mean of the data and the dispersion parameter α that describes the deviation from Poisson statistics. Monte Carlo simulations were performed to evaluate: (a) the performances of the dispersion parameter α estimator, (b) the goodness of fit of the NB model for a wide range of activity values. We focused on the effect produced by correction for random and scatter events in the projection (sinogram) domain, due to their importance in quantitative analysis of PET data. The analysis developed herein allowed us to assess the accuracy of the NB distribution model to fit corrected sinogram data, and to evaluate the sensitivity of the dispersion parameter α to quantify deviation from Poisson statistics. By the sinogram ROI-based analysis, it was demonstrated that deviation on the measured data from Poisson statistics can be quantitatively characterized by the dispersion parameter α, in any noise conditions and corrections.

[1]  Julian C. Matthews,et al.  Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[2]  S. Cherry,et al.  Physics in Nuclear Medicine , 2004 .

[3]  Kay Fitzpatrick,et al.  Development of Tools for Evaluating the Safety Implications of Highway Design Decisions , 2007 .

[4]  M. Daube-Witherspoon,et al.  Unified Deadtime Correction Model For PET , 1990, 1990 IEEE Nuclear Science Symposium Conference Record.

[5]  C. C. Watson,et al.  New, faster, image-based scatter correction for 3D PET , 1999, 1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019).

[6]  Jeffrey A. Fessler,et al.  Mean and variance of coincidence counting with deadtime , 2002 .

[7]  Albert Macovski,et al.  A Maximum Likelihood Approach to Emission Image Reconstruction from Projections , 1976, IEEE Transactions on Nuclear Science.

[8]  Osama Mawlawi,et al.  PET/CT imaging artifacts. , 2005, Journal of nuclear medicine technology.

[9]  H. Zaidi,et al.  Scatter Compensation Techniques in PET. , 2007, PET clinics.

[10]  Joe N. Perry,et al.  Estimation of the Negative Binomial Parameter κ by Maximum Quasi -Likelihood , 1989 .

[11]  Frederic H Fahey,et al.  Data acquisition in PET imaging. , 2002, Journal of nuclear medicine technology.

[12]  U. Ruotsalainen,et al.  Quantitatively accurate data recovery from attenuation-corrected sinogram using filtering of sinusoidal trajectory signals , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[13]  G. Saha Basics Of Pet Imaging: Physics, Chemistry, And Regulations , 2004 .

[14]  U. Fano Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions , 1947 .

[15]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[16]  Dominique Lord,et al.  Estimating Dispersion Parameter of Negative Binomial Distribution for Analysis of Crash Data , 2007 .

[17]  Simon Tavaré,et al.  BayesPeak: Bayesian analysis of ChIP-seq data , 2009, BMC Bioinformatics.

[18]  Luigi Landini,et al.  Dynamic PET Data Generation and Analysis Software Tool for Evaluating the SNR Dependence on Kinetic Parameters Estimation , 2015 .

[19]  Simon R. Cherry,et al.  PET: Physics, Instrumentation, and Scanners , 2006 .

[20]  Ken D. Sauer,et al.  A unified approach to statistical tomography using coordinate descent optimization , 1996, IEEE Trans. Image Process..

[21]  J. Lloyd-Smith Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases , 2007, PloS one.

[22]  Thomas Beyer,et al.  X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. , 2003, Seminars in nuclear medicine.

[23]  F. Fazio,et al.  Scatter correction techniques in 3D PET: a Monte Carlo evaluation , 1998, 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255).

[24]  Sündüz Keleş,et al.  A Statistical Framework for the Analysis of ChIP-Seq Data , 2011, Journal of the American Statistical Association.

[25]  L. Shepp,et al.  A Statistical Model for Positron Emission Tomography , 1985 .

[26]  Paul E. Kinahan,et al.  PET Image Reconstruction , 2005 .

[27]  R. Carson,et al.  Evaluation of bias and variance in low-count OSEM list mode reconstruction , 2015, Physics in medicine and biology.

[28]  Fionn Murtagh,et al.  Image restoration with noise suppression using a multiresolution support. , 1995 .

[29]  Michel Defrise,et al.  Exact and approximate rebinning algorithms for 3-D PET data , 1997, IEEE Transactions on Medical Imaging.

[30]  T. Tony Cai,et al.  Nonparametric regression in exponential families , 2010, 1010.3836.

[31]  Ken D. Sauer,et al.  A local update strategy for iterative reconstruction from projections , 1993, IEEE Trans. Signal Process..

[32]  W. Piegorsch Maximum likelihood estimation for the negative binomial dispersion parameter. , 1990, Biometrics.

[33]  Anthonin Reilhac,et al.  Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies , 2008, NeuroImage.

[34]  Jeffrey A. Fessler,et al.  Emission image reconstruction for randoms-precorrected PET allowing negative sinogram values , 2004, IEEE Transactions on Medical Imaging.

[35]  Jinyi Qi,et al.  Effect of errors in the system matrix on maximum a posteriori image reconstruction , 2005, Physics in medicine and biology.

[36]  Yanchun Bao,et al.  Maximum likelihood estimate for the dispersion parameter of the negative binomial distribution , 2013 .

[37]  Frank Wübbeling PET Image Reconstruction , 2012 .

[38]  Paul Kinahan,et al.  Attenuation correction for a combined 3D PET/CT scanner. , 1998, Medical physics.

[39]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[40]  D. Lord,et al.  Adjustment for Maximum Likelihood Estimate of Negative Binomial Dispersion Parameter , 2008 .

[41]  Jeffrey A. Fessler Penalized weighted least-squares image reconstruction for positron emission tomography , 1994, IEEE Trans. Medical Imaging.

[42]  C. Comtat,et al.  Fast reconstruction of 3-D PET data with accurate statistical modeling , 1997 .

[43]  Jeffrey A. Fessler,et al.  Statistical image reconstruction methods for randoms-precorrected PET scans , 1998, Medical Image Anal..

[44]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.