The “long wavelength radar” on the Mars-94 orbiter

Abstract On the Mars-94 mission a long wavelength radar will be deployed on the orbiter for the purpose of probing the surface and sub-surface layers of the planet as well as the top-side of the Martian ionosphere. The radar will permit the study of the structure and electrophysical characteristics of the planetary regolith. The specific goal is to determine the extent and depth of permafrost layers thought to exist. The altitude distribution, the zenith angle variations and the solar wind dependence of the ionospheric electron density will be determined with the same radar for the purpose of assessing the influence of the planetary atmosphere and weak intrinsic and/or induced magnetic fields on the interaction between the planet and the solar wind.

[1]  W. H. Michael,et al.  Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking , 1979 .

[2]  S. Bauer,et al.  Solar cycle variation of the upper atmosphere temperature of Mars , 1989 .

[3]  D. Campbell,et al.  Dual-polarization radar observations of Mars: Tharsis and Environs , 1982 .

[4]  W. I. Axford A commentary on our present understanding of the Martian magnetosphere , 1991 .

[5]  R. R. Green,et al.  Radar measurements of Martian topography and surface properties - The 1971 and 1973 oppositions , 1975 .

[6]  Thomas E. Cravens,et al.  The Martian ionosphere in light of the Viking observations , 1978 .

[7]  F. S. Johnson,et al.  A new concept for the daytime magnetosphere of Venus , 1979 .

[8]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[9]  C. Russell,et al.  The dynamic behavior of the Venus ionosphere in response to solar wind interactions , 1980 .

[10]  C. B. Farmer,et al.  Global seasonal variation of water vapor on Mars and the implications for permafrost , 1979 .

[11]  A. Nagy,et al.  Detection of a new “chemical” boundary at comet Halley , 1986 .

[12]  T. Hagfors Remote Probing of the Moon by Infrared and Microwave Emissions and by Radar , 1970 .

[13]  S. Bauer,et al.  Solar control of the Mars ionosphere , 1990 .

[14]  J. Luhmann,et al.  Comparisons of peak ionosphere pressures at Mars and Venus with incident solar wind dynamic Pressure , 1992 .

[15]  Carol R. Stoker,et al.  The early environment and its evolution on Mars: Implication for life , 1989 .

[16]  G. I. Volkov,et al.  Results of solar plasma electron observations on Mars‐2 and Mars‐3 spacecraft , 1973 .

[17]  Thomas E. Cravens,et al.  A one-dimensional multispecies magnetohydrodynamic model of the dayside ionosphere of Mars , 1988 .

[18]  E. R. Pounder,et al.  The Physics of Ice , 1965 .

[19]  J. Luhmann,et al.  Near-Mars space , 1991 .

[20]  D. J. Milton Water and processes of degradation in the Martian landscape , 1973 .

[21]  T. Cravens,et al.  The ionopause current layer at Venus , 1991 .

[22]  J. Slavin,et al.  The solar wind interaction with Mars revisited , 1982 .

[23]  D. J. Milton,et al.  Preliminary Mariner 9 Report on the Geology of Mars (A 4. 3) , 1972 .

[24]  D. Muhleman,et al.  Mars: VLA observations of the Northern Hemisphere and the north polar region at wavelengths of 2 and 6 cm , 1987 .

[25]  C. Russell,et al.  The magnetic barrier at Venus , 1991 .

[26]  Harold Masursky,et al.  An overview of geological results from Mariner 9 , 1973 .

[27]  T. Cravens,et al.  The ionospheric effects of a weak intrinsic magnetic field at Mars , 1992 .

[28]  P. Woiceshyn,et al.  S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: Extended mission coverage of polar and intermediate latitudes , 1973 .

[29]  J. Phillips,et al.  Asymmetries in the location of the Venus ionopause , 1988 .

[30]  C. Russell,et al.  Growth and maintenance of large-scale magnetic fields in the dayside Venus ionosphere , 1984 .

[31]  A. Grafe Intensity and position of the Martian magnetic dipole, calculated from the observations of the satellite Phobos 2 , 1992 .

[32]  J. Herman,et al.  The effect of energetically produced O2 + on the ion temperatures of the Martian thermosphere , 1979 .

[33]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[34]  S. Dolginov On The magnetic field of Mars: Mars 2 and 3 evidence , 1978 .

[35]  F. Fanale,et al.  Global distribution and migration of subsurface ice on mars , 1985 .

[36]  C. Russell,et al.  Initial Pioneer Venus Magnetic Field Results: Dayside Observations , 1979, Science.

[37]  S. Squyres Urey prize lecture: Water on Mars , 1989 .

[38]  J. Ulrichs,et al.  Electrical properties of rocks and their significance for lunar radar observations , 1969 .

[39]  G. Olhoeft,et al.  Dielectric properties of the first 100 meters of the Moon , 1975 .

[40]  A. M. Krymskii,et al.  Magnetic fields in the venus ionosphere: General features , 1988 .

[41]  W. B. Hanson,et al.  Viking electron temperature measurements: Evidence for a magnetic field in the Martian ionosphere , 1988 .

[42]  G. Neugebauer,et al.  Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft , 1973 .

[43]  Steven J. Ostro,et al.  Mars - Dual-polarization radar observations with extended coverage , 1985 .