Enhancing the Cycle Life of Lithium‐Anode‐Free Batteries through Polydopamine‐Coated Substrates

[1]  D. Seo,et al.  Highly Reversible Lithium Host Materials for High‐Energy‐Density Anode‐Free Lithium Metal Batteries , 2022, Advanced Functional Materials.

[2]  Yue Ma,et al.  Challenges, Strategies, and Prospects of the Anode‐Free Lithium Metal Batteries , 2022, Advanced Energy and Sustainability Research.

[3]  Xianjue Chen,et al.  Regulating Lithium Metal Interface Using Seed-Coating Layer for High-Power Batteries , 2022, Chemical Engineering Journal.

[4]  Dr. Peng Li,et al.  Quasi-Compensatory Effect in Emerging Anode-Free Lithium Batteries , 2021, eScience.

[5]  Hee‐Tak Kim,et al.  An electron-deficient carbon current collector for anode-free Li-metal batteries , 2021, Nature Communications.

[6]  B. Hwang,et al.  Mitigating dendrite formation and electrolyte decomposition via functional double layers coating on copper current collector in anode-free lithium metal battery , 2021, Journal of the Taiwan Institute of Chemical Engineers.

[7]  Yifan Zhang,et al.  Dendrite-Free and Stable Lithium Metal Battery Achieved by a Model of Stepwise Lithium Deposition and Stripping , 2021, Nano-micro letters.

[8]  C. Grey,et al.  Toward an Understanding of SEI Formation and Lithium Plating on Copper in Anode-Free Batteries , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[9]  Byung Gon Kim,et al.  Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content , 2021 .

[10]  Tongchao Liu,et al.  Rejuvenating dead lithium supply in lithium metal anodes by iodine redox , 2021, Nature Energy.

[11]  B. Hwang,et al.  Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries , 2021, Nature Communications.

[12]  J. Dahn,et al.  Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells , 2021, Journal of the Electrochemical Society.

[13]  Shuying Cheng,et al.  Stable Lithium Metal Anode Achieved by In Situ Grown CuO Nanowire Arrays on Cu Foam , 2020 .

[14]  Jung Kyu Kim,et al.  Biopolymer-Inspired N-Doped Nanocarbon Using Carbonized Polydopamine: A High-Performance Electrocatalyst for Hydrogen-Evolution Reaction , 2020, Polymers.

[15]  S. Choudhury,et al.  On the nucleation and early-stage growth of Li electrodeposits. , 2019, Nano letters.

[16]  J. Dahn,et al.  Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte , 2019, Nature Energy.

[17]  H. Dai,et al.  Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries , 2019, Journal of The Electrochemical Society.

[18]  T. Mikolajick,et al.  In Situ Raman Spectroscopy on Silicon Nanowire Anodes Integrated in Lithium Ion Batteries , 2019, Journal of The Electrochemical Society.

[19]  Chong Yan,et al.  Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. , 2018, Angewandte Chemie.

[20]  Lei Wen,et al.  Engineering of lithium-metal anodes towards a safe and stable battery , 2018, Energy Storage Materials.

[21]  Chong Yan,et al.  Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes , 2018 .

[22]  Shengbo Zhang Problem, Status, and Possible Solutions for Lithium Metal Anode of Rechargeable Batteries , 2018 .

[23]  Haeshin Lee,et al.  Polydopamine Surface Chemistry: A Decade of Discovery. , 2018, ACS applied materials & interfaces.

[24]  Rui Zhang,et al.  Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. , 2017, Angewandte Chemie.

[25]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[26]  Malachi Noked,et al.  Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior , 2017 .

[27]  Jianming Zheng,et al.  Anode‐Free Rechargeable Lithium Metal Batteries , 2016 .

[28]  De‐Yin Wu,et al.  An electrochemical surface-enhanced Raman spectroscopic study on nanorod-structured lithium prepared by electrodeposition: Spectroscopic studies on nanorod-structured lithium , 2016 .

[29]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[30]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[31]  Luqi Liu,et al.  A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. , 2013, Nanoscale.

[32]  Jae-Hun Kim,et al.  Metallic anodes for next generation secondary batteries. , 2013, Chemical Society reviews.

[33]  Martin Winter,et al.  SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry , 2013 .

[34]  Myung-Hyun Ryou,et al.  Mussel‐Inspired Adhesive Binders for High‐Performance Silicon Nanoparticle Anodes in Lithium‐Ion Batteries , 2013, Advanced materials.

[35]  Shizhao Xiong,et al.  Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries , 2012 .

[36]  M. Armand,et al.  Building better batteries , 2008, Nature.

[37]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[38]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[39]  Norbert F Scherer,et al.  Single-molecule mechanics of mussel adhesion , 2006, Proceedings of the National Academy of Sciences.

[40]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .