Complex networks

Abstract.We briefly describe the toolkit used for studying complex systems: nonlinear dynamics, statistical physics, and network theory. We place particular emphasis on network theory--the topic of this special issue--and its importance in augmenting the framework for the quantitative study of complex systems. In order to illustrate the main issues, we briefly review several areas where network theory has led to significant developments in our understanding of complex systems. Specifically, we discuss changes, arising from network theory, in our understanding of (i) the Internet and other communication networks, (ii) the structure of natural ecosystems, (iii) the spread of diseases and information, (iv) the structure of cellular signalling networks, and (v) infrastructure robustness. Finally, we discuss how complexity requires both new tools and an augmentation of the conceptual framework--including an expanded definition of what is meant by a “quantitative prediction.”

[1]  Stefano Mossa,et al.  Truncation of power law behavior in "scale-free" network models due to information filtering. , 2002, Physical review letters.

[2]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[3]  Joel E. Cohen,et al.  Food web patterns and their consequences , 1991, Nature.

[4]  Sally Floyd,et al.  Wide area traffic: the failure of Poisson modeling , 1995, TNET.

[5]  Jeffrey M. Hausdorff,et al.  Fractal dynamics in physiology: Alterations with disease and aging , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Havlin,et al.  Power law scaling for a system of interacting units with complex internal structure , 1998 .

[7]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[8]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[9]  Kensuke Fukuda,et al.  Similarities between communication dynamics in the Internet and the autonomic nervous system , 2003 .

[10]  Marc Barthelemy,et al.  Spatial structure of the internet traffic , 2003 .

[11]  Harry Eugene Stanley,et al.  Application of statistical physics methods and conceptsto the study of science & technology systems , 2001, Scientometrics.

[12]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[13]  H. Stanley,et al.  Behavioral-independent features of complex heartbeat dynamics. , 2001, Physical review letters.

[14]  John Scott What is social network analysis , 2010 .

[15]  Jie Wu,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2003 .

[16]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[17]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M E J Newman,et al.  Identity and Search in Social Networks , 2002, Science.

[19]  Roger Guimerà,et al.  Analytical solution of a model for complex food webs. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Adrian Pagan,et al.  The econometrics of financial markets , 1996 .

[21]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[22]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[23]  Armin Bunde,et al.  The science of disasters : climate disruptions, heart attacks, and market crashes , 2002 .

[24]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[26]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[27]  I Csabai,et al.  1/f noise in computer network traffic , 1994 .

[28]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[29]  S V Buldyrev,et al.  Self-organized complexity in economics and finance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A Díaz-Guilera,et al.  Self-similar community structure in a network of human interactions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Guido Caldarelli,et al.  Universal scaling relations in food webs , 2003, Nature.

[32]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[33]  H. Eugene Stanley,et al.  Universal features in the growth dynamics of complex organizations , 1998, cond-mat/9804100.

[34]  L. Amaral,et al.  Small-World Networks: Evidence for a Crossover Picture , 1999, cond-mat/9903108.

[35]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[36]  V. Plerou,et al.  Scaling of the distribution of price fluctuations of individual companies. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[37]  A. Fisher,et al.  The Theory of Critical Phenomena: An Introduction to the Renormalization Group , 1992 .

[38]  R. Guimerà,et al.  QUANTITATIVE PATTERNS IN THE STRUCTURE OF MODEL AND EMPIRICAL FOOD WEBS , 2004, q-bio/0401023.

[39]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[40]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[41]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[42]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[43]  J. Rogers Chaos , 1876 .

[44]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[46]  P. Libby The Scientific American , 1881, Nature.

[47]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  Víctor M Eguíluz,et al.  Epidemic threshold in structured scale-free networks. , 2002, Physical review letters.

[49]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Xerox,et al.  The Small World , 1999 .

[51]  Misako Takayasu,et al.  Critical behaviors and 1/Φ noise in information traffic , 1996 .

[52]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[53]  Petter Holme Edge overload breakdown in evolving networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  C Koch,et al.  Complexity and the nervous system. , 1999, Science.

[55]  Stephanie Forrest,et al.  Email networks and the spread of computer viruses. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  M Girvan,et al.  Structure of growing social networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[58]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[59]  Mark E. J. Newman,et al.  Ego-centered networks and the ripple effect , 2001, Soc. Networks.

[60]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[61]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[62]  Roman Jackiw,et al.  Introducing scale symmetry , 1972 .

[63]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[64]  Jean-Jacques Pansiot,et al.  On routes and multicast trees in the Internet , 1998, CCRV.

[65]  H. Stanley,et al.  Scale invariance in the nonstationarity of human heart rate. , 2000, Physical review letters.

[66]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[67]  Sergei Maslov,et al.  Modularity and extreme edges of the internet. , 2003, Physical review letters.

[68]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[69]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[70]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[71]  Hongsong Chou,et al.  A Note on Power-Laws of Internet Topology , 2000, ArXiv.

[72]  S. Strogatz Exploring complex networks , 2001, Nature.

[73]  Kensuke Fukuda,et al.  Origin of critical behavior in Ethernet traffic , 2000 .

[74]  L F Lago-Fernández,et al.  Fast response and temporal coherent oscillations in small-world networks. , 1999, Physical review letters.

[75]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[76]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[77]  Leo P. Kadanoff,et al.  Turbulent heat flow: Structures and scaling , 2001 .

[78]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[80]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: I Epirical results for company growth , 1997, cond-mat/9702082.

[81]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[82]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[83]  Roger Guimerà,et al.  Robust patterns in food web structure. , 2001, Physical review letters.

[84]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[85]  Luís A. Nunes Amaral,et al.  Sexual networks: implications for the transmission of sexually transmitted infections. , 2003, Microbes and infection.

[86]  V. Plerou,et al.  Similarities between the growth dynamics of university research and of competitive economic activities , 1999, Nature.

[87]  Amos Maritan,et al.  Size and form in efficient transportation networks , 1999, Nature.

[88]  Stanley Milgram,et al.  An Experimental Study of the Small World Problem , 1969 .

[89]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[91]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[92]  J. M. Ottino,et al.  Engineering complex systems , 2004, Nature.

[93]  A. Barabasi,et al.  Halting viruses in scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[95]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[96]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Mark Newman,et al.  Models of the Small World , 2000 .

[98]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[99]  Neo D. Martinez,et al.  Food-web structure and network theory: The role of connectance and size , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[100]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[101]  Béla Bollobás,et al.  Random Graphs , 1985 .

[102]  Ira B Schwartz,et al.  Information flow dynamics and timing patterns in the arrival of email viruses. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[104]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[105]  Duncan J. Watts,et al.  Book Review: Small Worlds. The Dynamics of Networks Between Order and Randomness , 2000 .

[106]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[107]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[108]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[109]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1997, TNET.

[110]  H. Takayasu,et al.  Dynamic phase transition observed in the Internet traffic flow , 2000 .

[111]  Alessandro Vespignani,et al.  Topology and correlations in structured scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[113]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[114]  A. Vanraan,et al.  Fractal dimension of co-citations , 1990, Nature.

[115]  G. Caldarelli,et al.  The fractal properties of Internet , 2000, cond-mat/0009178.

[116]  Joshua M. Epstein,et al.  Growing artificial societies , 1996 .

[117]  T. McMahon,et al.  Size and Shape in Biology , 1973, Science.

[118]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[119]  R. Paine,et al.  Food-web analysis through field measurement of per capita interaction strength , 1992, Nature.

[120]  D S Callaway,et al.  Network robustness and fragility: percolation on random graphs. , 2000, Physical review letters.

[121]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.