A new algorithm to search for small nonzero |x3-y2| values
暂无分享,去创建一个
[1] D. Lewis,et al. On the representation of integers by binary forms , 1961 .
[2] I. Niven,et al. An introduction to the theory of numbers , 1961 .
[3] A. Baker,et al. Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[4] Noam D. Elkies. Rational Points Near Curves and Small Nonzero |x3-y2| via Lattice Reduction , 2000, ANTS.
[5] A. K. Lenstra,et al. Factoring polynomials with integer coefficients , 1982 .
[6] H. M. Stark,et al. Effective estimates of solutions of some diophantine equations , 1973 .
[7] M. Laska. The diophantine equation x3 − y2 = r , 1983 .
[8] Attila Pethö,et al. On Mordell's Equation , 1998, Compositio Mathematica.
[9] J. Oesterlé,et al. Nouvelles approches du «théorème» de Fermat , 1988 .
[10] Donald E. Knuth,et al. Analysis of a Simple Factorization Algorithm , 1976, Theor. Comput. Sci..
[11] Bruce Rothschild,et al. Marshall Hall, Jr. , 1982 .
[12] S. Lang,et al. Conjectured Diophantine Estimates on Elliptic Curves , 1983 .
[13] Carles Padró,et al. Taking cube roots in Zm , 2002, Appl. Math. Lett..
[14] T. Doctoral,et al. Consejo Superior De Investigaciones Cientificas Barcelona Institute of Comparative Law , 1954, International and Comparative Law Quarterly.
[15] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[16] Diana Savin,et al. ABOUT A DIOPHANTINE EQUATION , 2009 .
[17] Ove Hemer. On the diophantine equation y2-k=x3 , 1952 .
[18] S. Lang,et al. Old and new conjectured diophantine inequalities , 1990 .
[19] L. J. Mordell,et al. The diophantine equationz2=ax4+2bx2y2+cy4 , 1967 .