A new algorithm to search for small nonzero |x3-y2| values

In relation to Hall's conjecture, a new algorithm is presented to search for small nonzero k = |x 3 -y 2 | values. Seventeen new values of k < x 1/2 are reported.

[1]  D. Lewis,et al.  On the representation of integers by binary forms , 1961 .

[2]  I. Niven,et al.  An introduction to the theory of numbers , 1961 .

[3]  A. Baker,et al.  Contributions to the theory of diophantine equations I. On the representation of integers by binary forms , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Noam D. Elkies Rational Points Near Curves and Small Nonzero |x3-y2| via Lattice Reduction , 2000, ANTS.

[5]  A. K. Lenstra,et al.  Factoring polynomials with integer coefficients , 1982 .

[6]  H. M. Stark,et al.  Effective estimates of solutions of some diophantine equations , 1973 .

[7]  M. Laska The diophantine equation x3 − y2 = r , 1983 .

[8]  Attila Pethö,et al.  On Mordell's Equation , 1998, Compositio Mathematica.

[9]  J. Oesterlé,et al.  Nouvelles approches du «théorème» de Fermat , 1988 .

[10]  Donald E. Knuth,et al.  Analysis of a Simple Factorization Algorithm , 1976, Theor. Comput. Sci..

[11]  Bruce Rothschild,et al.  Marshall Hall, Jr. , 1982 .

[12]  S. Lang,et al.  Conjectured Diophantine Estimates on Elliptic Curves , 1983 .

[13]  Carles Padró,et al.  Taking cube roots in Zm , 2002, Appl. Math. Lett..

[14]  T. Doctoral,et al.  Consejo Superior De Investigaciones Cientificas Barcelona Institute of Comparative Law , 1954, International and Comparative Law Quarterly.

[15]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[16]  Diana Savin,et al.  ABOUT A DIOPHANTINE EQUATION , 2009 .

[17]  Ove Hemer On the diophantine equation y2-k=x3 , 1952 .

[18]  S. Lang,et al.  Old and new conjectured diophantine inequalities , 1990 .

[19]  L. J. Mordell,et al.  The diophantine equationz2=ax4+2bx2y2+cy4 , 1967 .