Decoding Linear Block Codes Using a Priority-First Search : Performance Analysis and Suboptimal Version

An efficient maximum-likelihood soft-decision decoding algorithm for linear block codes using a generalized Dijkstra's algorithm was proposed by Han, Hartmann, and Chen (1993). We prove that this algorithm is efficient for most practical communication systems where the probability of error is less than 10/sup -3/ by finding an upper bound of the computational effort of the algorithm. A suboptimal decoding algorithm is also proposed. The performance of this suboptimal decoding algorithm is within 0.25 dB of the performance of an optimal decoding algorithm for the (104, 52) binary extended quadratic residue code, and within 0.5 dB of the optimal performance for the (128, 64) binary BCH code, respectively.

[1]  Yair Be'ery,et al.  Optimal soft decision block decoders based on fast Hadamard transform , 1986, IEEE Trans. Inf. Theory.

[2]  Yair Be'ery,et al.  Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes , 1989, IEEE Trans. Inf. Theory.

[3]  Tai-Yang Hwang Decoding linear block codes for minimizing word error rate (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[4]  Gustave Solomon,et al.  Convolutional Coding Techniques for Certain Quadratic Residual Codes , 1975 .

[5]  J. Modestino,et al.  Reduced-search soft-decision trellis coding of linear block codes , 1982, IEEE Trans. Inf. Theory.

[6]  Gilles Brassard,et al.  Algorithmics - theory and practice , 1988 .

[7]  G. Solomon,et al.  A Connection Between Block and Convolutional Codes , 1979 .

[8]  Jakov Snyders,et al.  Reduced lists of error patterns for maximum likelihood soft decoding , 1991, IEEE Trans. Inf. Theory.

[9]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[10]  J. Bibb Cain,et al.  Error-Correction Coding for Digital Communications , 1981 .

[11]  Alexander Vardy,et al.  Bit-level soft-decision decoding of Reed-Solomon codes , 1991, IEEE Trans. Commun..

[12]  Yair Be'ery,et al.  Soft trellis-based decoder for linear block codes , 1994, IEEE Trans. Inf. Theory.

[13]  B. Dorsch,et al.  A decoding algorithm for binary block codes and J -ary output channels (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[14]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[15]  Keith Price,et al.  Review of "Principles of Artificial Intelligence by Nils J. Nilsson", Tioga Publishing Company, Palo Alto, CA, ISBN 0-935382-01-1. , 1980, SGAR.

[16]  Yunghsiang Sam Han,et al.  Efficient priority-first search maximum-likelihood soft-decision decoding of linear block codes , 1993, IEEE Trans. Inf. Theory.

[17]  Jack K. Wolf,et al.  Efficient maximum likelihood decoding of linear block codes using a trellis , 1978, IEEE Trans. Inf. Theory.

[18]  Alexander Vardy,et al.  More efficient soft decoding of the Golay codes , 1991, IEEE Trans. Inf. Theory.

[19]  Kishor S. Trivedi Probability and Statistics with Reliability, Queuing, and Computer Science Applications , 1984 .

[20]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[21]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[22]  Yunghsiang S. Han,et al.  Designing Efficient Maximum-Likelihood Soft-Decision Decoding Algorithms for Linear Block Codes Using Algorithm A* , 1992 .

[23]  K. R. Matis,et al.  REDUCED-RESEARCH SOFT-DECISION TRELLIS DECODING OF LINEAR BLOCK CODES. , 1982 .

[24]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[25]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[26]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[27]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[28]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[29]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .