Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30fs temporal resolution

We describe an ultrafast spectroscopy system based on two synchronized noncollinear optical parametric amplifiers (NOPAs). Each NOPA can be independently configured to generate ultrabroadband sub-10fs visible pulses, tunable 15fs visible pulses (500–720nm), tunable 15–30fs near-infrared pulses (900–1500nm), and 15–20fs blue pulses (430–480nm). This system enables to perform pump-probe experiments over nearly two octaves of spectrum with unprecedented temporal resolution. We present application examples highlighting the capability of this instrument to track excited-state dynamics occurring on the sub-100fs time scale: electron transfer in polymer-fullerene blends, intersubband energy relaxation in carbon nanotubes, and internal conversion in carotenoids.

[1]  J. Bigot,et al.  Generation of blue‐green 10 fs pulses using an excimer pumped dye amplifier , 1991 .

[2]  S. Lochbrunner,et al.  Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR , 2000 .

[3]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[4]  D. Braun,et al.  Photo‐ and electroluminescence efficiency in soluble poly(dialky1‐p‐phenylenevinylene) , 1994 .

[5]  Ursula Keller,et al.  Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics , 1999 .

[6]  G. Wiederrecht,et al.  Spectroscopic and Photochemical Properties of Open-Chain Carotenoids , 2002 .

[7]  G. Cerullo,et al.  Few-optical-cycle laser pulses by OPA: broadband chirped mirror compression and SPIDER characterization , 2002 .

[8]  R. Miller,et al.  Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics. , 2001, Optics letters.

[9]  F. Krausz,et al.  Measurement of interferometric autocorrelations: comment. , 1997, Applied optics.

[10]  M. Cavallari,et al.  Femtosecond visible optical parametric oscillator , 1998 .

[11]  Takashi Saito,et al.  Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization , 2001, Nature.

[12]  S. Silvestri,et al.  Mirror-dispersion-controlled sub-10-fs optical parametric amplifier in the visible. , 1999, Optics letters.

[13]  C. Voisin,et al.  Ultrafast carrier dynamics in single-wall carbon nanotubes. , 2003, Physical review letters.

[14]  Takao Fuji,et al.  Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control. , 2002, Optics letters.

[15]  H. Haus,et al.  Design and fabrication of double-chirped mirrors. , 1997, Optics letters.

[16]  P. Becker,et al.  Compression of optical pulses to six femtoseconds by using cubic phase compensation. , 1987, Optics letters.

[17]  E. Menna,et al.  Selectivity of chemical oxidation attack of single-wall carbon nanotubes in solution , 2003 .

[18]  Keith A. Nelson,et al.  Ultrafast Phenomena XIV , 2005 .

[19]  Louis E. Brus,et al.  The Optical Resonances in Carbon Nanotubes Arise from Excitons , 2005, Science.

[20]  Vladislav V. Yakovlev,et al.  Ultrafast rainbow: tunable ultrashort pulses from a solid-state kilohertz system , 1997 .

[21]  Richard L. Fork,et al.  Generation of tunable 9 femtosecond optical pulses in the near infrared , 1989 .

[22]  Moses,et al.  Ultrafast spectroscopic studies of photoinduced electron transfer from semiconducting polymers to C60. , 1994, Physical review. B, Condensed matter.

[23]  E. Riedle,et al.  20-50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier. , 2000, Optics letters.

[24]  G. Lanzani,et al.  Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. , 2004, Physical review letters.

[25]  G. Cerullo,et al.  Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors. , 2001, Optics letters.

[26]  G. Lanzani,et al.  Real-Time Vibronic Coupling Dynamics in a Prototypical Conjugated Oligomer , 1999 .

[27]  Generation of 11-fs pulses tunable across the visible by optical parametric amplification , 1997 .

[28]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[29]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[30]  Eberhard Riedle,et al.  Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses. , 2004, Optics letters.

[31]  I. Walmsley,et al.  Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. , 1998, Optics letters.

[32]  R. Cogdell,et al.  Carotenoids in Photosynthesis , 1996, Photochemistry and photobiology.

[33]  F Hache,et al.  Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. , 1995, Optics letters.

[34]  J. Tauc,et al.  Picosecond coherence coupling in the pump and probe technique , 1981 .

[35]  S. Mazumdar,et al.  Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. , 2004, Physical Review Letters.

[36]  G. Cerullo,et al.  Photosynthetic Light Harvesting by Carotenoids: Detection of an Intermediate Excited State , 2002, Science.

[37]  S. Silvestri,et al.  Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. , 1998, Optics letters.

[38]  A. Dalton,et al.  Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. , 2004, Physical review letters.

[39]  R. Smalley,et al.  Ultrafast carrier dynamics in single-walled carbon nanotubes probed by feintosecond spectroscopy , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[40]  G. Lanzani,et al.  Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. , 2005, Physical review letters.

[41]  Takayoshi Kobayashi,et al.  Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. , 1998, Optics letters.

[42]  R. Mathies,et al.  The first step in vision occurs in femtoseconds: complete blue and red spectral studies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C L Kane,et al.  Ratio problem in single carbon nanotube fluorescence spectroscopy. , 2003, Physical review letters.

[44]  L Gallmann,et al.  Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. , 1999, Optics letters.

[45]  S. Silvestri,et al.  Ultrafast optical parametric amplifiers , 2003 .

[46]  V. Sundström,et al.  Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. , 2004, Chemical reviews.

[47]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[48]  R A Mathies,et al.  The first step in vision: femtosecond isomerization of rhodopsin. , 1991, Science.

[49]  E. Riedle,et al.  Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. , 1997, Optics letters.

[50]  Akira Shirakawa,et al.  Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification , 1999 .