A systematic study of the role of dissipative environment in regulating entanglement and exciton delocalization in the Fenna-Matthews-Olson complex

The goal of this Article is to perform a systematic study the global entanglement and coherence length dynamics in a natural light-harvesting system Fenna-Matthews-Olson (FMO) complex across various parameters of a dissipative environment from low to high temperatures, weak to strong system-environment coupling, and non-Markovian environments. The non-perturbative numerically exact hierarchical equations of motions method is employed to generate the dynamics of the system. We found that entanglement is driven primarily by the strength of interaction between the system and environment, and it is modulated by the interplay between temperature and non-Markovianity. In contrast, coherence length is found not to be sensitive to non-Markovianity. Our results do not show the direct correlation between global entanglement and the efficiency of the excitation energy transfer.

[1]  F. Delgado,et al.  Quantum Entanglement and State-Transference in Fenna–Matthews–Olson Complexes: A Post-Experimental Simulation Analysis in the Computational Biology Domain , 2023, International journal of molecular sciences.

[2]  F. Delgado,et al.  Temperature Dependence of Entanglement and Coherence in Fenna-Matthews-Olson Complex , 2023, Journal of Physics: Conference Series.

[3]  Pavlo O. Dral,et al.  QD3SET-1: a database with quantum dissipative dynamics datasets , 2023, Frontiers in Physics.

[4]  U. Kleinekathöfer,et al.  Recent progress in atomistic modeling of light-harvesting complexes: a mini review , 2022, Photosynthesis Research.

[5]  Z. Shuai,et al.  Unified Definition of Exciton Coherence Length for Exciton-Phonon Coupled Molecular Aggregates. , 2022, The journal of physical chemistry letters.

[6]  B. Mennucci,et al.  The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. , 2022, The Journal of chemical physics.

[7]  K. B. Whaley,et al.  Interplay of vibration- and environment-assisted energy transfer , 2021, New Journal of Physics.

[8]  Shun-Cai Zhao,et al.  Charge-transport enhanced by the quantum entanglement in the photosystem II reaction center , 2021, The European Physical Journal Plus.

[9]  Y. Dubi,et al.  Do photosynthetic complexes use quantum coherence to increase their efficiency? Probably not , 2021, Science Advances.

[10]  J. McFadden,et al.  Quantum Biology: An Update and Perspective , 2021, Quantum Reports.

[11]  F. Delgado,et al.  Parametric Mapping of Quantum Regime in Fenna–Matthews–Olson Light-Harvesting Complexes: A Synthetic Review of Models, Methods and Approaches , 2020, Applied Sciences.

[12]  D. Pantazis,et al.  Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods , 2020, The journal of physical chemistry. B.

[13]  Y. Tanimura Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). , 2020, The Journal of chemical physics.

[14]  D. Coker,et al.  Quantum biology revisited , 2020, Science Advances.

[15]  Mario Krenn,et al.  Advances in high-dimensional quantum entanglement , 2019, 1911.10006.

[16]  N. Linden,et al.  Structure and Efficiency in Bacterial Photosynthetic Light-Harvesting. , 2019, The journal of physical chemistry letters.

[17]  B. Bagchi,et al.  Delocalization and Quantum Entanglement in Physical Systems. , 2019, The journal of physical chemistry letters.

[18]  Nicolas P. D. Sawaya,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[19]  Benedetta Mennucci,et al.  Delocalized excitons in natural light-harvesting complexes , 2018, Reviews of Modern Physics.

[20]  B. Bagchi,et al.  Environment-Assisted Quantum Coherence in Photosynthetic Complex. , 2017, The journal of physical chemistry letters.

[21]  K. B. Whaley,et al.  Using coherence to enhance function in chemical and biophysical systems , 2017, Nature.

[22]  Yi Zhao,et al.  Hierarchy of forward-backward stochastic Schrödinger equation. , 2016, The Journal of chemical physics.

[23]  William H. Miller,et al.  The Symmetrical Quasi-Classical Model for Electronically Non-Adiabatic Processes Applied to Energy Transfer Dynamics in Site-Exciton Models of Light-Harvesting Complexes. , 2016, Journal of chemical theory and computation.

[24]  T. Brandes,et al.  Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping , 2016, 1602.01340.

[25]  G. Scholes,et al.  Coherence in energy transfer and photosynthesis. , 2015, Annual review of physical chemistry.

[26]  G. Tóth,et al.  Evaluating convex roof entanglement measures. , 2014, Physical Review Letters.

[27]  P. Arpin,et al.  Photosynthetic light harvesting: excitons and coherence , 2014, Journal of The Royal Society Interface.

[28]  Neill Lambert,et al.  Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems , 2013, 1311.0016.

[29]  J. Kongsted,et al.  Toward Reliable Prediction of the Energy Ladder in Multichromophoric Systems: A Benchmark Study on the FMO Light-Harvesting Complex. , 2013, Journal of chemical theory and computation.

[30]  Klaus Schulten,et al.  Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers. , 2012, Journal of chemical theory and computation.

[31]  G. Scholes,et al.  Measures and implications of electronic coherence in photosynthetic light-harvesting , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Jeremy M Moix,et al.  Equilibrium-reduced density matrix formulation: Influence of noise, disorder, and temperature on localization in excitonic systems , 2012, 1202.4705.

[33]  A. Thilagam Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex. , 2012, The Journal of chemical physics.

[34]  Jeremy M Moix,et al.  Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO , 2011, 1109.3416.

[35]  K. Schulten,et al.  From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[36]  H Rabitz,et al.  Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes. , 2011, The Journal of chemical physics.

[37]  T. Renger,et al.  The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. , 2011, The journal of physical chemistry letters.

[38]  K. B. Whaley,et al.  Quantum entanglement phenomena in photosynthetic light harvesting complexes , 2010, 1012.4059.

[39]  Alexandra Olaya-Castro,et al.  Distribution of entanglement in light-harvesting complexes and their quantum efficiency , 2010, 1003.3610.

[40]  Justin R. Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[41]  M. Wilde,et al.  Identifying the quantum correlations in light-harvesting complexes , 2009, 0912.5112.

[42]  Andreas Buchleitner,et al.  Efficient and coherent excitation transfer across disordered molecular networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  R. Silbey,et al.  Optimization of exciton trapping in energy transfer processes. , 2009, The journal of physical chemistry. A.

[44]  G. Fleming,et al.  Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature , 2009, Proceedings of the National Academy of Sciences.

[45]  K. B. Whaley,et al.  Quantum entanglement in photosynthetic light-harvesting complexes , 2009, 0905.3787.

[46]  G. Scholes,et al.  Electronic and vibrational coherences in resonance energy transfer along MEH-PPV chains at room temperature. , 2009, The journal of physical chemistry. A.

[47]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[48]  G. Scholes,et al.  Coherent Intrachain Energy Migration in a Conjugated Polymer at Room Temperature , 2009, Science.

[49]  Seogjoo J. Jang,et al.  Theory of coherent resonance energy transfer. , 2008, The Journal of chemical physics.

[50]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[51]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[52]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[53]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[54]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[55]  G. Paz-Silva,et al.  On multipartite entanglement measures , 2006 .

[56]  P. Hänggi,et al.  Quantum dynamics in strong fluctuating fields , 2005, cond-mat/0510774.

[57]  Adi Shraibman,et al.  Rank, Trace-Norm and Max-Norm , 2005, COLT.

[58]  Graham R Fleming,et al.  Exciton analysis in 2D electronic spectroscopy. , 2005, The journal of physical chemistry. B.

[59]  Mika Hirvensalo Quantum Computing , 2004, Natural Computing Series.

[60]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[61]  Yu Shi,et al.  Quantum Entanglement in Condensed Matter Systems , 2002 .

[62]  Klaus Schulten,et al.  Photosynthetic apparatus of purple bacteria , 2002, Quarterly Reviews of Biophysics.

[63]  Tõnu Pullerits,et al.  Exciton Delocalization in the B850 Light-Harvesting Complex: Comparison of Different Measures , 2001 .

[64]  V. May,et al.  Ultrafast Exciton Motion in Photosynthetic Antenna Systems: The FMO-Complex , 1998 .

[65]  R. Louwe,et al.  TOWARD AN INTEGRAL INTERPRETATION OF THE OPTICAL STEADY-STATE SPECTRA OF THE FMO-COMPLEX OF PROSTHECOCHLORIS AESTUARII. 2. EXCITON SIMULATIONS , 1997 .

[66]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[67]  S. Mukamel,et al.  Multiple Exciton Coherence Sizes in Photosynthetic Antenna Complexes viewed by Pump−Probe Spectroscopy , 1997 .

[68]  U. Weiss Quantum Dissipative Systems , 1993 .

[69]  B. Matthews,et al.  Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola , 1975, Nature.

[70]  A. Olaya-Castro,et al.  Characterizing quantum-sharing of electronic excitation in molecular aggregates , 2011 .

[71]  K. Müllen,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer , 2010 .