A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory

[1]  S. Timoshenko Theory of Elastic Stability , 1936 .

[2]  G. Cowper The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .

[3]  Clifford Ambrose Truesdell,et al.  The Mechanics of Leonardo da Vinci , 1968 .

[4]  A. H. Chilver,et al.  Frame buckling: An illustration of the perturbation technique , 1970 .

[5]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[6]  R. E. Jones,et al.  Nonlinear finite elements , 1978 .

[7]  Nicola Luigi Rizzi,et al.  Symmetric bifurcation of plane frames through a modified potential energy approach , 1980 .

[8]  L. A. Starosel'skii,et al.  On the theory of curvilinear timoshenko-type rods , 1983 .

[9]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[10]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[11]  M. J. Clarke,et al.  A study of incremental-iterative strategies for non-linear analyses , 1990 .

[12]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[13]  Yibin Fu,et al.  Nonlinear stability analysis of pre-stressed elastic bodies , 1999 .

[14]  Douglas N. Arnold,et al.  On the Range of Applicability of the Reissner–Mindlin and Kirchhoff–Love Plate Bending Models , 2002 .

[15]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[16]  Benvenuto Edoardo,et al.  La scienza delle costruzioni e il suo sviluppo storico , 2006 .

[17]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[18]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[19]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[20]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[21]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[22]  S. Kwolek Strong , 2014, Canadian Medical Association Journal.

[23]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[24]  J. Greer,et al.  Strong, lightweight, and recoverable three-dimensional ceramic nanolattices , 2014, Science.

[25]  Simon R. Eugster,et al.  Geometric Continuum Mechanics and Induced Beam Theories , 2015 .

[26]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[27]  Noël Challamel,et al.  Discrete and non-local elastica , 2015 .

[28]  Victor A. Eremeyev,et al.  Strain gradient elasticity with geometric nonlinearities and its computational evaluation , 2015 .

[29]  Nam-Il Kim,et al.  Isogeometric vibration analysis of free-form Timoshenko curved beams , 2015 .

[30]  A. Misra,et al.  Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics , 2015 .

[31]  Noël Challamel,et al.  Hencky Bar-Chain Model for Buckling and Vibration of Beams with Elastic End Restraints , 2015 .

[32]  Enzo Marino,et al.  Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams , 2016 .

[33]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part I: a theoretical revisitation , 2016 .

[34]  Flavio Stochino,et al.  On the whole spectrum of Timoshenko beams. Part II: further applications , 2016, Zeitschrift für angewandte Mathematik und Physik.

[35]  Alessandro Della Corte,et al.  Equilibria of a clamped Euler beam (Elastica) with distributed load: large deformations , 2016, 1610.07814.

[36]  Flavio Stochino,et al.  An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams , 2016 .

[37]  Holm Altenbach,et al.  Stability of inhomogeneous micropolar cylindrical tube subject to combined loads , 2016 .

[38]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[39]  Francesco dell’Isola,et al.  Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models , 2016 .

[40]  Francesco dell’Isola,et al.  Linear pantographic sheets: Asymptotic micro-macro models identification , 2017 .

[41]  Julia R. Greer,et al.  Reexamining the mechanical property space of three-dimensional lattice architectures , 2017 .

[42]  Francesco dell’Isola,et al.  Dynamics of 1D nonlinear pantographic continua , 2017 .

[43]  Enzo Marino,et al.  Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature , 2017 .

[44]  Viacheslav Balobanov,et al.  Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity , 2018, Computer Methods in Applied Mechanics and Engineering.

[45]  Emilio Turco,et al.  Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional Elastica , 2018 .

[46]  P. Seppecher,et al.  Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams , 2018 .

[47]  Dionisio Del Vescovo,et al.  Non-Linear Lumped-Parameter Modeling of Planar Multi-Link Manipulators with Highly Flexible Arms , 2018, Robotics.

[48]  Francesco dell’Isola,et al.  Pantographic metamaterials: an example of mathematically driven design and of its technological challenges , 2018, Continuum Mechanics and Thermodynamics.

[49]  Pierre Seppecher,et al.  Strain gradient and generalized continua obtained by homogenizing frame lattices , 2018, Mathematics and Mechanics of Complex Systems.

[50]  Leopoldo Greco,et al.  A reconstructed local B̄ formulation for isogeometric Kirchhoff-Love shells , 2018 .

[51]  Viacheslav Balobanov,et al.  Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler-Bernoulli and shear-deformable beams , 2018 .

[52]  Roderic S. Lakes,et al.  Stability of Cosserat solids: size effects, ellipticity and waves , 2018 .

[53]  Francesco dell’Isola,et al.  Pantographic metamaterials show atypical Poynting effect reversal , 2018 .

[54]  Francesco dell’Isola,et al.  Axisymmetric deformations of a 2nd grade elastic cylinder , 2018, Mechanics Research Communications.

[55]  Tomasz Lekszycki,et al.  A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams , 2018 .

[56]  Costas P. Grigoropoulos,et al.  Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials , 2018, Mathematics and Mechanics of Solids.

[57]  K. Bertoldi,et al.  Correlation between topology and elastic properties of imperfect truss-lattice materials , 2019, Journal of the Mechanics and Physics of Solids.

[58]  Francesco dell’Isola,et al.  Extensible Beam Models in Large Deformation Under Distributed Loading: A Numerical Study on Multiplicity of Solutions , 2019, Higher Gradient Materials and Related Generalized Continua.

[59]  Pierre Seppecher,et al.  Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms , 2019, Mathematics and Mechanics of Solids.

[60]  Luca Placidi,et al.  On the dependence of standard and gradient elastic material constants on a field of defects , 2020, Mathematics and Mechanics of Solids.

[61]  Roman Grygoruk,et al.  Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation , 2019 .

[62]  Francesco dell’Isola,et al.  Edge effects in Hypar nets , 2019, Comptes Rendus Mécanique.

[63]  Francesco dell’Isola,et al.  Pantographic beam: a complete second gradient 1D-continuum in plane , 2019, Zeitschrift für angewandte Mathematik und Physik.

[64]  Francesco dell’Isola,et al.  Heuristic Homogenization of Euler and Pantographic Beams , 2019, Mechanics of Fibrous Materials and Applications.

[65]  Ivan Giorgio,et al.  Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling , 2019, Archive of Applied Mechanics.

[66]  P. Seppecher,et al.  Large deformations of Timoshenko and Euler beams under distributed load , 2019, Zeitschrift für angewandte Mathematik und Physik.

[67]  Dionisio Del Vescovo,et al.  Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators , 2019, Mathematics and Mechanics of Complex Systems.

[68]  Tomasz Lekszycki,et al.  Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling , 2019 .

[69]  Viacheslav Balobanov,et al.  Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro- and nano-beam models , 2019 .

[70]  J. Chróścielewski,et al.  Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches , 2019 .

[71]  Leopoldo Greco,et al.  Two new triangularG1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates , 2019, Computer Methods in Applied Mechanics and Engineering.

[72]  Ivan Giorgio,et al.  Nonlinear dynamics of uniformly loaded Elastica: Experimental and numerical evidence of motion around curled stable equilibrium configurations , 2019, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[73]  Marco Laudato,et al.  Advances in pantographic structures: design, manufacturing, models, experiments and image analyses , 2019, Continuum Mechanics and Thermodynamics.

[74]  Isaac Elishakoff,et al.  Who developed the so-called Timoshenko beam theory? , 2019, Mathematics and Mechanics of Solids.

[75]  Leopoldo Greco,et al.  A quadrilateralG1-conforming finite element for the Kirchhoff plate model , 2019, Computer Methods in Applied Mechanics and Engineering.

[76]  Costas P. Grigoropoulos,et al.  Intertwined microlattices greatly enhance the performance of mechanical metamaterials , 2019, Mathematics and Mechanics of Solids.

[77]  W. Wendland,et al.  Variational Formulations , 2021, Boundary Integral Equations.

[78]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.