Parallel Continuous Non-Convex Optimization

Parallel globed optimization is one very promising area of research since due to inherent difficulty of the problems it studies, only instances of limited dimension can be solved in reasonable computer time on conventional machines. However, the use of parallel and distributed processing can substantially increase the possibilities for the success of the global optimization approach in practice. In this chapter we are concerned with the development of parallel algorithms for solving certain classes of non-convex optimization problems. We present an introductory survey of exact parallel algorithms that have been used to solve structured (partially separable) problems and problems with simple constraints, and algorithms based on parallel local search and its deterministic or stochastic refinements for solving general non-convex problems. Indefinite quadratic programming, posynomial optimization, and the general global concave minimization problem can be solved using these approaches. In addition, the minimum concave cost network flow problem and location problems with economies of scale are used in illustrating these techniques for the solution of large-scale, structured problems.

[1]  Panos M. Pardalos,et al.  Optimization methods for computing global minima of nonconvex potential energy functions , 1994, J. Glob. Optim..

[2]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[3]  Sonja Berner,et al.  Parallel methods for verified global optimization practice and theory , 1996, J. Glob. Optim..

[4]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[5]  J. Ben Rosen,et al.  A parallel stochastic method for solving linearly constrained concave global minimization problems , 1992, J. Glob. Optim..

[6]  Guoliang Xue,et al.  Molecular conformation on the CM-5 by parallel two-level simulated annealing , 1994, J. Glob. Optim..

[7]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[8]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[9]  Ehl Emile Aarts,et al.  A Probabilistic Analysis of Local Search , 1996 .

[10]  Mark A. Franklin,et al.  Simulated annealing on a multiprocessor , 1988, Proceedings 1988 IEEE International Conference on Computer Design: VLSI.

[11]  Jonas Mockus,et al.  Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..

[12]  Peter Värbrand,et al.  Tabu Metaheuristic based on Local Search for the Concave Production-Transportation Problem' , 1996 .

[13]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[14]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[15]  Chun Zhang,et al.  Mixed-discrete nonlinear optimization with simulated annealing , 1993 .

[16]  Mikael Rönnqvist,et al.  A Lagrangean heuristic for the capacitated concave minimum cost network flow problem , 1994 .

[17]  Panos M. Pardalos,et al.  Editorial: Hierarchical and bilevel programming , 1996, J. Glob. Optim..

[18]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[19]  Panos M. Pardalos,et al.  Parallel algorithms for global optimization problems , 1996, Solving Combinatorial Optimization Problems in Parallel.

[20]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[21]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[22]  Renpu Ge,et al.  A Filled Function Method for Finding a Global Minimizer of a Function of Several Variables , 1990, Math. Program..

[23]  Elijah Polak,et al.  Multistart method with estimation scheme for global satisfycing problems , 1993, J. Glob. Optim..

[24]  Panos M. Pardalos,et al.  Parallel Processing of Discrete Optimization Problems , 1995 .

[25]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[26]  Panos M. Pardalos,et al.  Space-covering approach and modified Frank-Wolfe algorithm for optimal nuclear reactor reload design , 1992 .

[27]  A. V. Levy,et al.  Topics in global optimization , 1982 .

[28]  Bernard Yaged,et al.  Minimum cost routing for static network models , 1971, Networks.

[29]  Richard H. Byrd,et al.  Parallel global optimization: numerical methods, dynamic scheduling methods, and application to molecular configuration , 1994 .

[30]  Giorgio Gallo,et al.  Concave cost minimization on networks , 1979 .

[31]  Giorgio Gallo,et al.  An algorithm for the min concave cost flow problem , 1980 .

[32]  Panos M. Pardalos,et al.  Parallel computing in nonconvex programming , 1993, Ann. Oper. Res..

[33]  R. Byrd,et al.  A New Stochastic/Perturbation Method for Large-Scale Global Optimization and its Application to Water Cluster Problems , 1994 .

[34]  M. Minoux,et al.  Multiflots de coût minimal avec fonctions de coût concaves , 1976 .

[35]  Jun Gu Parallel Algorithms for Satisfiability (SAT) Problem , 1994, Parallel Processing of Discrete Optimization Problems.

[36]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[37]  José Eduardo Souza de Cursi,et al.  Global optimization by random perturbation of the gradient method with a fixed parameter , 1994, J. Glob. Optim..

[38]  Fabio Schoen,et al.  Stochastic techniques for global optimization: A survey of recent advances , 1991, J. Glob. Optim..

[39]  P. Pardalos,et al.  Checking local optimality in constrained quadratic programming is NP-hard , 1988 .

[40]  C. Sutti Local and global optimization by parallel algorithms for MIMD systems , 1984, Ann. Oper. Res..

[41]  J. B. Rosen,et al.  A parallel algorithm for partially separable non-convex global minimization: Linear constraints , 1990 .

[42]  Marida Bertocchi A parallel algorithm for global optimization 1 , 1990 .

[43]  Gianni Di Pillo,et al.  A New Version of the Price's Algorithm for Global Optimization , 1997, J. Glob. Optim..

[44]  Alexander H. G. Rinnooy Kan,et al.  Concurrent stochastic methods for global optimization , 1990, Math. Program..

[45]  Jerry Eriksson,et al.  A parallel interval method implementation for global optimization using dynamic load balancing , 1995, Reliab. Comput..

[46]  Francesco Archetti,et al.  Asynchronous Parallel Search in Global Optimization Problems , 1982 .

[47]  Robert B. Schnabel,et al.  Dynamic Scheduling Strategies for an Adaptive, Asynchronous Parallel Global Optimization Algorithm ; CU-CS-625-92 , 1992 .

[48]  Panos M. Pardalos,et al.  Parallelized Heuristics for Combinatorial Search , 1997 .

[49]  Klaus Ritter,et al.  A Stochastic Method for Constrained Global Optimization , 1994, SIAM J. Optim..

[50]  Athanasios Migdalas,et al.  A C++ Class Library for Interval Arithmetic in Global Optimization , 1996 .

[51]  P. Pardalos,et al.  Greedy Randomized Adaptive Search for a Location Problem with Economies of Scale , 1997 .

[52]  János D. Pintér,et al.  Global optimization in action , 1995 .

[53]  Fabio Schoen,et al.  On a new stochastic global optimization algorithm based on censored observations , 1994, J. Glob. Optim..

[54]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[55]  A. T. Phillips,et al.  Guaranteed ε-approximate solution for indefinite quadratic global minimization , 1990 .

[56]  Roberto Battiti,et al.  The continuous reactive tabu search: Blending combinatorial optimization and stochastic search for global optimization , 1996, Ann. Oper. Res..

[57]  Ramon E. Moore,et al.  Rigorous methods for global optimization , 1992 .

[58]  Bruno Betrò,et al.  Bayesian methods in global optimization , 1991, J. Glob. Optim..

[59]  G. Nemhauser,et al.  Integer Programming , 2020 .

[60]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[61]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[62]  G. Gallo,et al.  Adjacent extreme flows and application to min concave cost flow problems , 1979, Networks.

[63]  V. P. Gergel,et al.  A parallel global optimization method and its implementation on a transputer system , 1992 .

[64]  Panos M. Pardalos,et al.  Minimum concave-cost network flow problems: Applications, complexity, and algorithms , 1991 .

[65]  Aimo Törn,et al.  Topographical global optimization , 1992 .

[66]  Panos M. Pardalos,et al.  Parallel search algorithms in global optimization , 1989 .

[67]  Robert L. Smith,et al.  Improving Hit-and-Run for global optimization , 1993, J. Glob. Optim..

[68]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[69]  Panos M. Pardalos,et al.  State of the Art in Global Optimization , 1996 .

[70]  Roman G. Strongin,et al.  Global multidimensional optimization on parallel computer , 1992, Parallel Comput..

[71]  Zelda B. Zabinsky,et al.  Towards Pure Adaptive Search , 1995, J. Glob. Optim..

[72]  L. Dixon,et al.  Parallel algorithms for global optimization , 1993 .

[73]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.