Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO–MgO absorbent for sorption-enhanced hydrogen production

[1]  I. L. Muller,et al.  Hydrogen production by sorption enhanced steam reforming of oxygenated hydrocarbons (ethanol, glycer , 2011 .

[2]  Na Wang,et al.  Hydrogen production by sorption enhanced steam reforming of propane: A thermodynamic investigation , 2011 .

[3]  Chang Hyun Ko,et al.  Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material , 2009 .

[4]  A. I. Lysikov,et al.  Sorption enhanced hydrocarbons reforming for fuel cell powered generators , 2008 .

[5]  Angeliki A. Lemonidou,et al.  Development of new CaO based sorbent materials for CO2 removal at high temperature , 2008 .

[6]  K. Yi,et al.  Properties of a Nano CaO/Al2O3 CO2 Sorbent , 2008 .

[7]  J. N. Kim,et al.  Properties of Ca-Base CO2 Sorbent Using Ca(OH)2 as Precursor , 2007 .

[8]  John F. Davidson,et al.  The Effects of Repeated Cycles of Calcination and Carbonation on a Variety of Different Limestones, as Measured in a Hot Fluidized Bed of Sand , 2007 .

[9]  Vasilije Manovic,et al.  Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. , 2007, Environmental science & technology.

[10]  Spyros Voutetakis,et al.  Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: Concept analysis and process simulation , 2006 .

[11]  R. Blom,et al.  Sorbent enhanced steam reforming (SESR) of methane using dolomite as internal carbon dioxide absorbent: Limitations due to Ca(OH)2 formation , 2006 .

[12]  Ningsheng Cai,et al.  Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent , 2005 .

[13]  K. Yi,et al.  Low-Pressure Sorption-Enhanced Hydrogen Production , 2005 .

[14]  Robin W. Hughes,et al.  Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor , 2004 .

[15]  E. Rubin,et al.  Sorbent Cost and Performance in CO2 Capture Systems , 2004 .

[16]  Juan Carlos Abanades,et al.  Enhancement of CaO for CO2 capture in an FBC environment , 2003 .

[17]  J. C. Abanades,et al.  Conversion Limits in the Reaction of CO2 with Lime , 2003 .

[18]  J. C. Abanades The maximum capture efficiency of CO2 using a carbonation/calcination cycle of CaO/CaCO3 , 2002 .

[19]  N. Nicoloso,et al.  In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation , 2002 .

[20]  L. Fan,et al.  Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas , 2002 .

[21]  Douglas P. Harrison,et al.  Hydrogen Production Using Sorption-Enhanced Reaction , 2001 .

[22]  Yoshizo Suzuki,et al.  Hydrogen Production from Hydrocarbon by Integration of Water−Carbon Reaction and Carbon Dioxide Removal (HyPr−RING Method) , 2001 .

[23]  Yoshio Yoshizawa,et al.  Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes , 1999 .

[24]  Takayuki Shibata,et al.  Applicability of zeolite for CO2 storage in a CaO-CO2 high temperature energy storage system , 1997 .

[25]  D. P. Harrison,et al.  CHARACTERISTICS OF THE REVERSIBLE REACTION BETWEEN CO2(g) AND CALCINED DOLOMITE , 1996 .

[26]  Douglas P. Harrison,et al.  Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen , 1994 .