Effect of molecular geometry and extended conjugation on the performance of hydrogen-bonded semiconductors in organic thin-film field-effect transistors

A general synthetic method has been used for the condensation of the 7-azaindole substructure at both extremes of centrosymmetric fused polyheteroaromatic systems. Four different aromatic spacers (benzene, naphthalene, anthracene and pyrene) that modify the molecular geometry and the π-conjugated surface have proved the ability of 7-azaindole to work as a building block that can control the crystal packing through reciprocal hydrogen bond interactions. Two possible self-assembled columnar arrangements have been observed as a result of the π–π interactions between hydrogen-bonded ribbon-like supramolecular structures. A detailed comparative analysis of the molecular organisation driven by hydrogen bonding and π-stacking, in combination with DFT calculations, has revealed an interesting evolution of the charge transport parameters. Organic thin-film field-effect transistors have been fabricated with the hydrogen-bonded semiconductors, reaching mobilities that demonstrate the potential of this supramolecular approach to control the molecular organisation and promote the electronic communication between the organic building blocks.

[1]  A. Mishra Material perceptions and advances in molecular heteroacenes for organic solar cells , 2020 .

[2]  T. Okamoto,et al.  Bent-Shaped p-Type Small Molecule Organic Semiconductors: A Molecular Design Strategy for Next-Generation Practical Applications. , 2020, Journal of the American Chemical Society.

[3]  R. Janssen,et al.  A Self-Assembled Small Molecule-Based Hole Transporting Material for Inverted Perovskite Solar Cells. , 2020, Chemistry.

[4]  Jiansheng Jie,et al.  Roles of interfaces in the ideality of organic field-effect transistors. , 2020, Nanoscale horizons.

[5]  Xuefeng Guo,et al.  Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. , 2020, Chemical reviews.

[6]  Sagar M. Jain,et al.  Development of Dopant‐Free Organic Hole Transporting Materials for Perovskite Solar Cells , 2020, Advanced Energy Materials.

[7]  G. Schweicher,et al.  Molecular Semiconductors for Logic Operations: Dead‐End or Bright Future? , 2020, Advanced materials.

[8]  Hui Jiang,et al.  The Emergence of Organic Single Crystal Electronics. , 2020, Angewandte Chemie.

[9]  Chengyuan Wang,et al.  “Disrupt and induce” intermolecular interactions to rationally design organic semiconductor crystals: from herringbone to rubrene-like pitched π-stacking† , 2020, Chemical science.

[10]  Linghai Xie,et al.  Small‐Molecule‐Based Organic Field‐Effect Transistor for Nonvolatile Memory and Artificial Synapse , 2019, Advanced Functional Materials.

[11]  Yong‐Young Noh,et al.  Printable Semiconductors for Backplane TFTs of Flexible OLED Displays , 2019, Advanced Functional Materials.

[12]  Barbara Stadlober,et al.  Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices , 2019, Chemistry of materials : a publication of the American Chemical Society.

[13]  G. Ulrich,et al.  Hydrogen-Bonding as Supramolecular tool for Robust OFET Devices. , 2019, Chemistry.

[14]  Jwo-Huei Jou,et al.  Hole-transporting materials for organic light-emitting diodes: an overview , 2019, Journal of Materials Chemistry C.

[15]  Xingyi Huang,et al.  Polymer-Based Gate Dielectrics for Organic Field-Effect Transistors , 2019, Chemistry of Materials.

[16]  Y. Liao,et al.  Synthesis of the extended phenacene molecules, [10]phenacene and [11]phenacene, and their performance in a field-effect transistor , 2019, Scientific Reports.

[17]  Wei Zhou,et al.  Multifunctional porous hydrogen-bonded organic framework materials. , 2019, Chemical Society reviews.

[18]  Xiaojun Guo,et al.  Recent progress in printable organic field effect transistors , 2019, Journal of Materials Chemistry C.

[19]  Hiroki Mori,et al.  Synthesis and Physicochemical Properties of Dibenzo[2,3- d:2',3'- d']anthra[1,2- b:5,6- b']dithiophene (DBADT) and Its Derivatives: Effect of Substituents on Their Molecular Orientation and Transistor Properties. , 2019, The Journal of organic chemistry.

[20]  Ranjit Thakuria,et al.  The Nature and Applications of π–π Interactions: A Perspective , 2019, Crystal Growth & Design.

[21]  J. N. Moorthy,et al.  Small molecular hole-transporting materials (HTMs) in organic light-emitting diodes (OLEDs): structural diversity and classification , 2018 .

[22]  D. Fichou,et al.  From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single-Crystal Indolocarbazoles Through Delicate Synergetic CH/NH⋅⋅⋅π Interactions. , 2018, Angewandte Chemie.

[23]  S. Georgakopoulos,et al.  Structure–Property Correlation behind the High Mobility of Carbazolocarbazole , 2018 .

[24]  S. Georgakopoulos,et al.  Hydrogen-bonded azaphenacene: a strategy for the organization of π-conjugated materials , 2018 .

[25]  M. Heravi,et al.  Buchwald-Hartwig reaction: An overview , 2018 .

[26]  W. Hu,et al.  Organic semiconductor crystals. , 2018, Chemical Society reviews.

[27]  J. Pei,et al.  Control of π–π Stacking via Crystal Engineering in Organic Conjugated Small Molecule Crystals , 2018 .

[28]  Takao Someya,et al.  Recent Progress in the Development of Printed Thin‐Film Transistors and Circuits with High‐Resolution Printing Technology , 2017, Advanced materials.

[29]  Stephen Z. D. Cheng,et al.  Crystalline Organic Pigment-Based Field-Effect Transistors. , 2017, ACS applied materials & interfaces.

[30]  J. P. Cerón-Carrasco,et al.  Hydrogen Bond-Directed Cruciform and Stacked Packing of a Pyrrole-Based Azaphenacene , 2017 .

[31]  Rui-Peng Xu,et al.  Recent advances in flexible organic light-emitting diodes , 2016 .

[32]  Itaru Osaka,et al.  Design and elaboration of organic molecules for high field-effect-mobility semiconductors , 2016 .

[33]  Yaping Zang,et al.  Device Engineered Organic Transistors for Flexible Sensing Applications , 2016, Advanced materials.

[34]  J. Brédas,et al.  Noncovalent Interactions and Impact of Charge Penetration Effects in Linear Oligoacene Dimers and Single Crystals , 2016 .

[35]  A. Troisi,et al.  Regimes of Exciton Transport in Molecular Crystals in the Presence of Dynamic Disorder , 2016 .

[36]  J. Gražulevičius,et al.  Highly Luminous Sky-Blue Organic Light-Emitting Diodes Based on the Bis[(1,2)(5,6)]indoloanthracene Emissive Layer , 2016 .

[37]  Y. Hayashi,et al.  Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene , 2016, Scientific Reports.

[38]  J. Brédas,et al.  Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes , 2016 .

[39]  A. Troisi,et al.  A very general rate expression for charge hopping in semiconducting polymers. , 2015, The Journal of chemical physics.

[40]  Tejender S. Thakur,et al.  Crystal structure and prediction. , 2015, Annual review of physical chemistry.

[41]  T. Geiger,et al.  Coupled π-conjugated chromophores: Squaraine dye dimers as two connected pendulums , 2015 .

[42]  Giuseppe Romanazzi,et al.  Epindolidiones—Versatile and Stable Hydrogen‐Bonded Pigments for Organic Field‐Effect Transistors and Light‐Emitting Diodes , 2015 .

[43]  A. Troisi,et al.  Dynamics of the excitonic coupling in organic crystals. , 2015, Physical review letters.

[44]  Joydeep Dhar,et al.  Herringbone to cofacial solid state packing via H-bonding in diketopyrrolopyrrole (DPP) based molecular crystals: influence on charge transport. , 2015, Chemical communications.

[45]  D. Perepichka,et al.  Supramolecular control of organic p/n-heterojunctions by complementary hydrogen bonding. , 2014, Faraday discussions.

[46]  Neil R Champness,et al.  Surface-based supramolecular chemistry using hydrogen bonds. , 2014, Accounts of chemical research.

[47]  Yong Qiu,et al.  Charge Transport in Amorphous Organic Semiconductors: Effects of Disorder, Carrier Density, Traps, and Scatters , 2014 .

[48]  Zhiyong Fan,et al.  Flexible photovoltaic technologies , 2014 .

[49]  Jian Pei,et al.  Roles of Flexible Chains in Organic Semiconducting Materials , 2014 .

[50]  Wenping Hu,et al.  25th Anniversary Article: Key Points for High‐Mobility Organic Field‐Effect Transistors , 2013, Advanced materials.

[51]  A. Facchetti,et al.  Fused Thiophene Semiconductors: Crystal Structure–Film Microstructure Transistor Performance Correlations , 2013 .

[52]  Mihai Irimia-Vladu,et al.  Hydrogen-bonds in molecular solids - from biological systems to organic electronics. , 2013, Journal of materials chemistry. B.

[53]  Gautam R Desiraju,et al.  Crystal engineering: from molecule to crystal. , 2013, Journal of the American Chemical Society.

[54]  C. David Sherrill,et al.  Energy component analysis of π interactions. , 2013, Accounts of chemical research.

[55]  Mihai Irimia-Vladu,et al.  Hydrogen‐Bonded Semiconducting Pigments for Air‐Stable Field‐Effect Transistors , 2013, Advanced materials.

[56]  Wi Hyoung Lee,et al.  Recent advances in organic transistor printing processes. , 2013, ACS applied materials & interfaces.

[57]  Ulrich S. Schubert,et al.  Inkjet printing of organic electronics – comparison of deposition techniques and state-of-the-art developments , 2013 .

[58]  S. Bauer,et al.  Intermolecular hydrogen-bonded organic semiconductors—Quinacridone versus pentacene , 2012 .

[59]  B. Iverson,et al.  Rethinking the term “pi-stacking” , 2012 .

[60]  Daoben Zhu,et al.  Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. , 2012, Chemical reviews.

[61]  J. Brédas,et al.  Charge-Transport Parameters of Acenedithiophene Crystals: Realization of One-, Two-, or Three-Dimensional Transport Channels through Alkyl and Phenyl Derivatizations , 2012 .

[62]  Mihai Irimia-Vladu,et al.  Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits , 2012, Advanced materials.

[63]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[64]  Hee Taek Yi,et al.  Ultra-flexible solution-processed organic field-effect transistors , 2012, Nature Communications.

[65]  N. Gibson,et al.  The Scherrer equation versus the 'Debye-Scherrer equation'. , 2011, Nature nanotechnology.

[66]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[67]  Itaru Osaka,et al.  Dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DATT): synthesis, characterization, and FET characteristics of new π-extended heteroarene with eight fused aromatic rings. , 2011, Journal of the American Chemical Society.

[68]  Alessandro Troisi,et al.  Charge transport in high mobility molecular semiconductors: classical models and new theories. , 2011, Chemical Society reviews.

[69]  Shinto Varghese,et al.  Role of Molecular Packing in Determining Solid-State Optical Properties of π-Conjugated Materials. , 2011, The journal of physical chemistry letters.

[70]  Marta Mas-Torrent,et al.  Role of molecular order and solid-state structure in organic field-effect transistors. , 2011, Chemical reviews.

[71]  I. Osaka,et al.  Linear- and angular-shaped naphthodithiophenes: selective synthesis, properties, and application to organic field-effect transistors. , 2011, Journal of the American Chemical Society.

[72]  F. Bechstedt,et al.  Charge transport in organic crystals: Theory and modelling , 2011 .

[73]  Huanli Dong,et al.  High performance organic semiconductors for field-effect transistors. , 2010, Chemical communications.

[74]  Wenping Hu,et al.  Organic single crystal field-effect transistors: advances and perspectives , 2010 .

[75]  Zhenan Bao,et al.  A crystal-engineered hydrogen-bonded octachloroperylene diimide with a twisted core: an n-channel organic semiconductor. , 2010, Angewandte Chemie.

[76]  W. Mader,et al.  Quinacridone organic field effect transistors with significant stability by vacuum sublimation , 2009 .

[77]  Noam Rappaport,et al.  Charge Transport in Disordered Organic Materials and Its Relevance to Thin‐Film Devices: A Tutorial Review , 2009 .

[78]  Kazuhito Tsukagoshi,et al.  Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors , 2009 .

[79]  G. Cuny,et al.  One-pot synthesis of alpha-carbolines via sequential palladium-catalyzed aryl amination and intramolecular arylation. , 2009, The Journal of organic chemistry.

[80]  Dylan Jayatilaka,et al.  Hirshfeld surface analysis , 2009 .

[81]  Daoben Zhu,et al.  6H-Pyrrolo[3,2-b:4,5-b′]bis[1,4]benzothiazines: facilely synthesized semiconductors for organic field-effect transistors , 2008 .

[82]  S. Price,et al.  Computational prediction of organic crystal structures and polymorphism , 2008 .

[83]  Hiroyuki Yanagisawa,et al.  Organic Field-Effect Transistor Devices Based on Latent Pigments of Unsubstituted Diketopyrrolopyrrole or Quinacridone , 2008 .

[84]  K. Müllen,et al.  Benzo[1,2-b:4,5-b']bis[b]benzothiophene as solution processible organic semiconductor for field-effect transistors. , 2008, Chemical communications.

[85]  Shizuo Tokito,et al.  Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a MoOx carrier injection layer , 2008 .

[86]  M. Spackman,et al.  Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. , 2007, Chemical communications.

[87]  M. MacLachlan,et al.  Synthesis and structures of novel luminescent bent acenedithiophenes. , 2007, Organic letters.

[88]  Ye Tao,et al.  Synthesis, characterization, and application of indolo[3,2-b]carbazole semiconductors. , 2007, Journal of the American Chemical Society.

[89]  Hiroshi Kageyama,et al.  Charge carrier transporting molecular materials and their applications in devices. , 2007, Chemical reviews.

[90]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[91]  Zhenan Bao,et al.  Organic single-crystal field-effect transistors , 2007 .

[92]  F. Leusen,et al.  Crystal structures of quinacridones , 2007 .

[93]  Alessandro Troisi,et al.  Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. , 2006, Physical review letters.

[94]  Alessandro Troisi,et al.  Dynamics of the intermolecular transfer integral in crystalline organic semiconductors. , 2005, The journal of physical chemistry. A.

[95]  Jie Cao,et al.  Solid-state packing of conjugated oligomers: from pi-stacks to the herringbone structure. , 2004, Journal of the American Chemical Society.

[96]  John E. Anthony,et al.  Functionalized Pentacene Active Layer Organic Thin‐Film Transistors , 2003 .

[97]  M. Spackman,et al.  Fingerprinting intermolecular interactions in molecular crystals , 2002 .

[98]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[100]  Rudolph A. Marcus,et al.  Electron transfer reactions in chemistry. Theory and experiment , 1993 .

[101]  H. Bässler,et al.  Charge transport in disordered molecular solids , 1991 .

[102]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[103]  Y. Hashimoto,et al.  Preparation of Pure Isomers of Dinitropyrenes , 1984 .

[104]  W. Schmidt Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series , 1977 .

[105]  H. B. Klevens,et al.  Spectral Resemblances of Cata‐Condensed Hydrocarbons , 1949 .

[106]  Li‐Zhu Wu,et al.  Hydrogen Bonded Supramolecular Structures , 2015 .