Measurement and the Distribution Law of In Situ Stresses at Deep Depth of Xingcun Coal Mine

Many kinds of in situ stress measurement methods are used nowadays, two most common of which are the overcoring and the hydraulic fracturing methods. In order to study the distribution law of in situ stress field in the deep position of Xingcun coal mine, 4 points of in situ stress measurement were carried out in underground roadways at the -1200 m level adopting the overcoring method. The hollow included technique was used to measure the 4 points of in-situ stress. According to the analysis of the measurement data, the results indicated that: (1) Among the three principal stresses on all measurement points, two principal stresses were nearly horizontal and one was nearly vertical. Furthermore, the maximum horizontal principal stress was more than the vertical principal stress, and the magnitude of vertical stress was equal to the weight of overburden rock mass;(2)The value of the maximum horizontal principal stress reached 52.3 MPa , the directions mainly concentrated on the extension of N42°W – N85°W, and the obliquity mainly concentrated on the extension of -29° – 10°;(3)The ratio of maximum horizontal principal stress to vertical principal stress was 1.42 - 1.64 with an average value of 1.55. The result presented that the in situ stress field in Xingcun coalmine at the depth of -1200m was dominated by tectonic horizontal stress. According to the results above, we gained the in situ stress states and the distribution law in the measured region. At the same time, it can offer reasonable basic parameters for underground roadway layout and support design of Xingcun coalmine.