Eigen-analysis of kernel operators for nonlinear dimension reduction and discrimination
暂无分享,去创建一个
[1] R. Taylor,et al. The Numerical Treatment of Integral Equations , 1978 .
[2] Christopher K. I. Williams,et al. Gaussian regression and optimal finite dimensional linear models , 1997 .
[3] B. Schölkopf,et al. Advances in kernel methods: support vector learning , 1999 .
[4] Noureddine El Karoui,et al. The spectrum of kernel random matrices , 2010, 1001.0492.
[5] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[6] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[7] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[8] Alexander J. Smola,et al. Learning with kernels , 1998 .
[9] D Haussler,et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[10] G. Baudat,et al. Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.
[11] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[12] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[13] Mikhail Belkin,et al. DATA SPECTROSCOPY: EIGENSPACES OF CONVOLUTION OPERATORS AND CLUSTERING , 2008, 0807.3719.
[14] Johan A. K. Suykens,et al. Sparse conjugate directions pursuit with application to fixed-size kernel models , 2011, Machine Learning.
[15] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[16] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[17] Guy L. Scott,et al. Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.
[18] G. Wahba. Spline models for observational data , 1990 .
[19] Michael Rabadi,et al. Kernel Methods for Machine Learning , 2015 .
[20] Johan A. K. Suykens,et al. Optimized fixed-size kernel models for large data sets , 2010, Comput. Stat. Data Anal..
[21] V. Vapnik,et al. A note one class of perceptrons , 1964 .
[22] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[23] Pietro Perona,et al. A Factorization Approach to Grouping , 1998, ECCV.
[24] Meirav Galun,et al. Fundamental Limitations of Spectral Clustering , 2006, NIPS.
[25] Jeongyoun Ahn. A stable hyperparameter selection for the Gaussian RBF kernel for discrimination , 2010, Stat. Anal. Data Min..
[26] R. Shah,et al. Least Squares Support Vector Machines , 2022 .
[27] Vladimir Vapnik,et al. The Nature of Statistical Learning , 1995 .
[28] Linda Kaufman,et al. Solving the quadratic programming problem arising in support vector classification , 1999 .
[29] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..