A direct approach to studying soliton perturbations

Starting with an integrable nonlinear evolution equation, the author investigates perturbations about a one-soliton solution, through the inversion of a linear equation for the first-order correction to the soliton solution. This inversion differs from past methods, as the proposed method takes place in coordinate space, not spectral space, while it employs some of the tools of inverse scattering theory. The method is applied to the Korteweg-de Vries, nonlinear Schrodinger and sine-Gordon equations. The first-order corrections are then obtained.

[1]  V. Karpman,et al.  Soliton Evolution in the Presence of Perturbation , 1979 .

[2]  Conservation laws and the perturbed KdV equation , 1990 .

[3]  V. Karpman,et al.  A perturbation theory for the Korteweg-De Vries equation , 1977 .

[4]  Demosthenes Polyzos,et al.  The inverse scattering problem for a rigid ellipsoid in linear elasticity , 1990 .

[5]  J. Leon,et al.  Nonlinear Coherent Structures , 1990 .

[6]  A. R. Bishop,et al.  Solitons in condensed matter: A paradigm , 1980 .

[7]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[8]  J. R. Goldgraben,et al.  On the movement of water and solute in extracellular channels with filtration, osmosis and active transport , 1972, Journal of Fluid Mechanics.

[9]  V. Karpman,et al.  A perturbational approach to the two-soliton systems , 1981 .

[10]  H. H. Kuehl,et al.  Korteweg-de Vries Soliton in a Slowly Varying Medium , 1978 .

[11]  Alan C. Newell,et al.  The Inverse Scattering Transform , 1980 .

[12]  D. J. Kaup,et al.  Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Russell L. Herman,et al.  The stochastic, damped KdV equation , 1990 .

[14]  Yuji Kodama,et al.  Perturbations of solitons and solitary waves , 1981 .

[15]  W. Rudin Real and complex analysis , 1968 .

[16]  Alternative Representations of the Inverse Scattering Transformation for the K-dV Equation and the Modified K-dV Equation , 1982 .

[17]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[18]  R. Herman Resolution of the motion of a perturbed KdV soliton , 1990 .

[19]  Lax-pair operators for squared eigenfunctions in the inverse scattering transformations , 1982 .

[20]  T. Kakutani,et al.  Effect of an Uneven Bottom on Gravity Waves , 1971 .

[21]  Some numerical solutions of a variable-coefficient Korteweg-de Vries equation (with applications to solitary wave development on a shelf) , 1972 .

[22]  A. Newell,et al.  Theory of nonlinear oscillating dipolar excitations in one-dimensional condensates , 1978 .

[23]  A. Fokas,et al.  The recursion operator of the Kadomtsev-Petviashvili equation and the squared eigenfunctions of the Schrödinger operator , 1986 .

[24]  G. Lamb Elements of soliton theory , 1980 .

[25]  D. Kaup,et al.  Closure of the squared Zakharov--Shabat eigenstates , 1976 .

[26]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[27]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[28]  Kimiaki Konno,et al.  A Loop Soliton Propagating along a Stretched Rope , 1981 .

[29]  A. Newell,et al.  Shelves and the Korteweg-de Vries equation , 1980, Journal of Fluid Mechanics.

[30]  Structure of tails produced under the action of perturbations on solitons , 1978 .

[31]  E. Ott,et al.  Damping of Solitary Waves , 1970 .

[32]  R. Sachs Completeness of Derivatives of Squared Schroedinger Eigenfunctions and Explicit Solutions of the Linearized KdV Equation. , 1983 .

[33]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .

[34]  C. Menyuk,et al.  Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes. , 1987, Optics letters.

[35]  R. Courant,et al.  Methoden der mathematischen Physik , .

[36]  Yuri S. Kivshar,et al.  Dynamics of Solitons in Nearly Integrable Systems , 1989 .

[37]  S. Leibovich,et al.  Amplification and decay of long nonlinear waves , 1973, Journal of Fluid Mechanics.

[38]  J. Keener,et al.  A Green's function for a linear equation associated with solitons , 1977 .

[39]  D. Kaup A Perturbation Expansion for the Zakharov–Shabat Inverse Scattering Transform , 1976 .

[40]  James P. Keener,et al.  Solitons under perturbations , 1977 .