Transition metal-mediated bioorthogonal protein chemistry in living cells.

Considerable attention has been focused on improving the biocompatibility of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), a hallmark of bioorthogonal reaction, in living cells. Besides creating copper-free versions of click chemistry such as strain promoted azide-alkyne cycloaddition (SPAAC), a central effort has also been made to develop various Cu(I) ligands that can prevent the cytotoxicity of Cu(I) ions while accelerating the CuAAC reaction. Meanwhile, additional transition metals such as palladium have been explored as alternative sources to promote a bioorthogonal conjugation reaction on cell surface, as well as within an intracellular environment. Furthermore, transition metal mediated chemical conversions beyond conjugation have also been utilized to manipulate protein activity within living systems. We highlight these emerging examples that significantly enriched our protein chemistry toolkit, which will likely expand our view on the definition and applications of bioorthogonal chemistry.

[1]  P. Jin,et al.  Genome-wide Profiling of 5-Formylcytosine Reveals Its Roles in Epigenetic Priming , 2013, Cell.

[2]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[3]  R. Weissleder,et al.  Tetrazine-based cycloadditions: application to pretargeted live cell imaging. , 2008, Bioconjugate chemistry.

[4]  E. Meggers,et al.  Ruthenium-induced allylcarbamate cleavage in living cells. , 2006, Angewandte Chemie.

[5]  Peng R. Chen,et al.  Introducing bioorthogonal functionalities into proteins in living cells. , 2011, Accounts of chemical research.

[6]  F. Schmidtchen,et al.  Bioconjugation of Peptides by Palladium-Catalyzed C-C Cross-Coupling in Water. , 1998, Angewandte Chemie.

[7]  H. Kolb,et al.  The growing impact of click chemistry on drug discovery. , 2003, Drug discovery today.

[8]  Z. Mester,et al.  Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. , 2011, Journal of the American Chemical Society.

[9]  T. Brown,et al.  Click chemistry with DNA. , 2010, Chemical Society reviews.

[10]  G. Charron,et al.  Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform , 2013, Proceedings of the National Academy of Sciences.

[11]  M. Finn,et al.  Tailored ligand acceleration of the Cu-catalyzed azide-alkyne cycloaddition reaction: practical and mechanistic implications. , 2010, Journal of the American Chemical Society.

[12]  Yun Sun,et al.  Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. , 2013, Angewandte Chemie.

[13]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[14]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[15]  D. Tirrell,et al.  Presentation and detection of azide functionality in bacterial cell surface proteins. , 2004, Journal of the American Chemical Society.

[16]  M. Howarth,et al.  Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase , 2005, Nature Methods.

[17]  Peng R. Chen,et al.  Palladium-triggered deprotection chemistry for protein activation in living cells. , 2014, Nature chemistry.

[18]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[19]  Sung-Kyun Ko,et al.  Fluorescent detection of palladium species with an O-propargylated fluorescein. , 2010, Chemical communications.

[20]  C. Hilty,et al.  Genetic incorporation of twelve meta-substituted phenylalanine derivatives using a single pyrrolysyl-tRNA synthetase mutant. , 2013, ACS chemical biology.

[21]  James A Van Deventer,et al.  Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. , 2010, Current opinion in chemical biology.

[22]  T. Kigawa,et al.  Regioselective Carbon–Carbon Bond Formation in Proteins with Palladium Catalysis; New Protein Chemistry by Organometallic Chemistry , 2006, Chembiochem : a European journal of chemical biology.

[23]  Christopher D. Spicer,et al.  Palladium-mediated cell-surface labeling. , 2012, Journal of the American Chemical Society.

[24]  Reyna K. V. Lim,et al.  Storable palladacycles for selective functionalization of alkyne-containing proteins. , 2013, Chemical communications.

[25]  Peng R. Chen,et al.  A readily synthesized cyclic pyrrolysine analogue for site-specific protein "click" labeling. , 2011, Chemical communications.

[26]  Reyna K. V. Lim,et al.  Bioorthogonal chemistry: recent progress and future directions. , 2010, Chemical communications.

[27]  J. Chin,et al.  Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair , 2010, Journal of the American Chemical Society.

[28]  K. Wooley,et al.  A genetically encoded acrylamide functionality. , 2013, ACS chemical biology.

[29]  Qing Lin,et al.  Design of Spiro[2.3]hex-1-ene, a Genetically Encodable Double-Strained Alkene for Superfast Photoclick Chemistry , 2014, Journal of the American Chemical Society.

[30]  D. Astruc,et al.  The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview , 2011 .

[31]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[32]  Wei Wang,et al.  Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition. , 2011, Chemistry, an Asian journal.

[33]  Lei Zhu,et al.  Chelation-assisted, copper(II)-acetate-accelerated azide-alkyne cycloaddition. , 2010, The Journal of organic chemistry.

[34]  B. G. Davis,et al.  Rewriting the bacterial glycocalyx via Suzuki-Miyaura cross-coupling. , 2013, Chemical communications.

[35]  M. Chan,et al.  A pyrrolysine analogue for site-specific protein ubiquitination. , 2009, Angewandte Chemie.

[36]  Christopher D. Spicer,et al.  Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation. , 2013, Angewandte Chemie.

[37]  M. Chan,et al.  A pyrrolysine analogue for protein click chemistry. , 2009, Angewandte Chemie.

[38]  Dario Pasini,et al.  The Click Reaction as an Efficient Tool for the Construction of Macrocyclic Structures , 2013, Molecules.

[39]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[40]  C. Porco,et al.  Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions , 2013, Science.

[41]  B. G. Davis,et al.  DNA Modification under Mild Conditions by Suzuki–Miyaura Cross-Coupling for the Generation of Functional Probes** , 2013, Angewandte Chemie.

[42]  Melanie S Sanford,et al.  Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.

[43]  M. Francis,et al.  Transition metal catalyzed methods for site-selective protein modification. , 2006, Current opinion in chemical biology.

[44]  T. Kigawa,et al.  Site‐Specific Functionalization of Proteins by Organopalladium Reactions , 2006, Chembiochem : a European journal of chemical biology.

[45]  P. Schultz,et al.  A method to site-specifically introduce methyllysine into proteins in E. coli. , 2010, Chemical communications.

[46]  Christopher D. Spicer,et al.  Palladium-mediated site-selective Suzuki-Miyaura protein modification at genetically encoded aryl halides. , 2011, Chemical Communications.

[47]  J. Chin,et al.  Expanding the genetic code of Drosophila melanogaster. , 2012, Nature chemical biology.

[48]  Markus Grammel,et al.  Chemical reporters for biological discovery. , 2013, Nature chemical biology.

[49]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[50]  Amy C Yan,et al.  Biocompatible copper(I) catalysts for in vivo imaging of glycans. , 2010, Journal of the American Chemical Society.

[51]  M. Francis,et al.  Selective tryptophan modification with rhodium carbenoids in aqueous solution. , 2004, Journal of the American Chemical Society.

[52]  Lei Zhu,et al.  Apparent copper(II)-accelerated azide-alkyne cycloaddition. , 2009, Organic letters.

[53]  J. Noel,et al.  Expanding the Library and Substrate Diversity of the Pyrrolysyl‐tRNA Synthetase to Incorporate Unnatural Amino Acids Containing Conjugated Rings , 2013, Chembiochem : a European journal of chemical biology.

[54]  Daniel C. Anthony,et al.  Expanding the diversity of chemical protein modification allows post-translational mimicry , 2007, Nature.

[55]  Dariusz Matosiuk,et al.  Click chemistry for drug development and diverse chemical-biology applications. , 2013, Chemical reviews.

[56]  A. Myers,et al.  Storable arylpalladium(II) reagents for alkene labeling in aqueous media. , 2011, Journal of the American Chemical Society.

[57]  Peng R. Chen,et al.  Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens. , 2013, Journal of the American Chemical Society.

[58]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[59]  D. Díaz,et al.  Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: a mechanistic report. , 2007, Journal of the American Chemical Society.

[60]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[61]  K. Nicolaou,et al.  Palladium-catalyzed cross-coupling reactions in total synthesis. , 2005, Angewandte Chemie.

[62]  Peng R. Chen,et al.  Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling , 2012 .

[63]  Dong Wang,et al.  Click Chemistry, A Powerful Tool for Pharmaceutical Sciences , 2008, Pharmaceutical Research.

[64]  M. Debets,et al.  Bioconjugation with strained alkenes and alkynes. , 2011, Accounts of chemical research.

[65]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.

[66]  Jeffery M. Tharp,et al.  Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. , 2014, Biochimica et biophysica acta.

[67]  Benjamin F. Cravatt,et al.  A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles , 2013, Nature Methods.

[68]  M. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001 .

[69]  A. Ojida,et al.  Suzuki coupling for protein modification , 2005 .

[70]  M. Finn,et al.  Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. , 2004, Journal of the American Chemical Society.

[71]  B. G. Davis,et al.  Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins , 2013, Journal of the American Chemical Society.

[72]  Z. Ball,et al.  Designing Enzyme-Like Catalysts: A Rhodium(II) Metallopeptide Case Study , 2015 .

[73]  Peng R. Chen,et al.  Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity. , 2012, Angewandte Chemie.

[74]  Rahimi M. Yusop,et al.  Palladium-mediated intracellular chemistry. , 2011, Nature chemistry.

[75]  B. Cravatt,et al.  Click Chemistry‐Led Advances in High Content Functional Proteomics , 2007 .

[76]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[77]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[78]  Carlo P Ramil,et al.  Bioorthogonal chemistry: strategies and recent developments. , 2013, Chemical communications.

[79]  F. Marlow,et al.  Monitoring Dynamic Glycosylation in Vivo Using Supersensitive Click Chemistry , 2014, Bioconjugate chemistry.

[80]  C. Fahrni,et al.  A Fluorogenic Probe for the Copper(I)-Catalyzed Azide−Alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,π*)−1(π,π*) Inversion , 2004 .

[81]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[82]  Renhua Liu,et al.  Application of click chemistry on preparation of separation materials for liquid chromatography. , 2011, Chemical Society reviews.

[83]  C. Bertozzi,et al.  Live‐Cell Imaging of Cellular Proteins by a Strain‐Promoted Azide–Alkyne Cycloaddition , 2010, Chembiochem : a European journal of chemical biology.

[84]  M. Chan,et al.  N6-(2-(R)-propargylglycyl)lysine as a clickable pyrrolysine mimic. , 2010, Chemistry, an Asian journal.

[85]  Shan Zhu,et al.  Advances in the understanding of mammalian copper transporters. , 2011, Advances in nutrition.

[86]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[87]  M. Best,et al.  Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. , 2009, Biochemistry.

[88]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.

[89]  N. Steinmetz,et al.  Labeling live cells by copper-catalyzed alkyne--azide click chemistry. , 2010, Bioconjugate chemistry.

[90]  S. Gerstberger,et al.  Methods for converting cysteine to dehydroalanine on peptides and proteins , 2011 .

[91]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[92]  I. Horváth,et al.  Complex hydrogenation/oxidation reactions of the water-soluble hydrogenation catalyst palladium di (sodium alizarinmonosulfonate) and details of homogeneous hydrogenation of lipids in isolated biomembranes and living cells. , 1991, Analytical biochemistry.

[93]  T. Muir,et al.  Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. , 2011, Journal of the American Chemical Society.

[94]  Willy Verstraete,et al.  Bio‐palladium: from metal recovery to catalytic applications , 2011, Microbial biotechnology.

[95]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[96]  Q. Wang,et al.  Selective dye-labeling of newly synthesized proteins in bacterial cells. , 2005, Journal of the American Chemical Society.

[97]  M. Finn,et al.  Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. , 2005, Bioconjugate chemistry.

[98]  M. Francis,et al.  Tyrosine-selective protein alkylation using pi-allylpalladium complexes. , 2006, Journal of the American Chemical Society.

[99]  Scott T. Clarke,et al.  Fast, cell-compatible click chemistry with copper-chelating azides for biomolecular labeling. , 2012, Angewandte Chemie.

[100]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[101]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[102]  B. G. Davis,et al.  Enhanced Aqueous Suzuki–Miyaura Coupling Allows Site-Specific Polypeptide 18F-Labeling , 2013, Journal of the American Chemical Society.

[103]  Reyna K. V. Lim,et al.  Copper-free Sonogashira cross-coupling for functionalization of alkyne-encoded proteins in aqueous medium and in bacterial cells. , 2011, Journal of the American Chemical Society.

[104]  Y. Leung,et al.  Gold-mediated bifunctional modification of oligosaccharides via a three-component coupling reaction. , 2012, Organic & biomolecular chemistry.

[105]  M. Chan,et al.  A Click‐and‐Release Pyrrolysine Analogue , 2013, Chembiochem : a European journal of chemical biology.

[106]  Norio Miyaura,et al.  Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds , 1995 .

[107]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[108]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[109]  Fahmi Himo,et al.  Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. , 2005, Journal of the American Chemical Society.

[110]  J. Chin,et al.  Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. , 2009, Journal of the American Chemical Society.

[111]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[112]  C. Bertozzi,et al.  Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag , 2009, Proceedings of the National Academy of Sciences.

[113]  M. Francis,et al.  Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. , 2009, Journal of the American Chemical Society.