Effect of short‐chain branching on melt fracture behavior of metallocene and conventional poly(ethylene/α‐olefin) copolymers

A phenomenon that can represent a great problem in melt processing is extrudate distortion. This effect can range in intensity from a loss of gloss to gross distortion and is the factor that limits the production rate in certain processes such as the blown film extrusion of linear low-density polyethylene (LLDPE). The aim of this work was to investigate the effects that molecular weight distribution and short-chain branch length have on the observed melt fracture phenomena for poly(ethylene/α-olefin) resins with similar weight comonomer content and molecular weight. The flow stability analysis conducted in this study has shown that, even increasing of few carbon atoms the short-chain branch length of the resins, the surface melt fracture phenomena are reduced and/or eliminated. Moreover, the comparison between the metallocene (mLLDPE) and conventional LLDPE samples, with the same comonomer (hexene), showed that the metallocene-catalyzed resin exhibits early onset and more severe melt fracture, due to its narrower molecular weight distribution. POLYM. ENG. SCI., 52:1968–1977, 2012. © 2012 Society of Plastics Engineers

[1]  F. Stadler,et al.  Influence of Short‐Chain Branching of Polyethylenes on the Temperature Dependence of Rheological Properties in Shear , 2007 .

[2]  Jan-Chan Huang,et al.  Study on the melt fracture of metallocene poly(ethylene‐octene) in capillary flow , 2005 .

[3]  G. McKinley,et al.  Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform , 2005 .

[4]  E. B. Muliawan,et al.  Melt Fracture of Linear PE , 2005 .

[5]  M. Sentmanat Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior , 2004 .

[6]  S. Hatzikiriakos,et al.  Fingerprinting the processing behavior of polyethylenes from transient extensional flow and peel experiments in the melt state , 2004 .

[7]  S. Hatzikiriakos,et al.  Mechanism of gross melt fracture elimination in the extrusion of polyethylenes in the presence of boron nitride , 2004 .

[8]  D. Bonchev,et al.  Topology‐rheology regression models for monodisperse linear and branched polyethylenes , 2003 .

[9]  D. Baird,et al.  Comparison of the melt fracture behavior of metallocene and conventional polyethylenes , 2003 .

[10]  D. Baird,et al.  Separating the effects of sparse long-chain branching on rheology from those due to molecular weight in polyethylenes , 2003 .

[11]  R. Bubeck Structure–property relationships in metallocene polyethylenes , 2002 .

[12]  C. Gogos,et al.  Relation between molecular structure and flow instability for ethylene/ α-olefin copolymers , 2002 .

[13]  J. Martínez-Salazar,et al.  Temperature and branching dependence of surface extrusion instabilities in metallocene catalysed polyethylene , 2002 .

[14]  J. Dealy,et al.  Gross melt fracture of polyethylene. II: Effects of molecular structure , 2002 .

[15]  A. Penlidis,et al.  Mechanical properties of ethylene/1-hexene copolymers with tailored short chain branching distributions , 2002 .

[16]  S. Hatzikiriakos Long chain branching and polydispersity effects on the rheological properties of polyethylenes , 2000 .

[17]  A. Santamaría,et al.  Rheological criteria to characterize metallocene catalyzed polyethylenes , 1999 .

[18]  H. Shih,et al.  Hot tack of metallocene catalyzed polyethylene and low‐density polyethylene blend , 1999 .

[19]  M. Denn,et al.  Disappearance of extrusion instabilities in brass capillary dies , 1999 .

[20]  Shi‐Qing Wang,et al.  Fast flow behavior of highly entangled monodisperse polymers , 1998 .

[21]  S. Hatzikiriakos,et al.  The work of adhesion of polymer/wall interfaces and its association with the onset of wall slip , 1998 .

[22]  A. Santamaría,et al.  Small-Amplitude Oscillatory Shear Flow Measurements as a Tool To Detect Very Low Amounts of Long Chain Branching in Polyethylenes , 1998 .

[23]  Shi‐Qing Wang,et al.  Stick−Slip Transition in Capillary Flow of Polyethylene. 2. Molecular Weight Dependence and Low-Temperature Anomaly , 1996 .

[24]  E. E. Rosenbaum,et al.  Flow Implications in the Processing of Tetrafluoroethylene/Hexafluoropropylene Copolymers , 1995 .

[25]  S. Lai,et al.  Improving Polymer Processability Utilizing Constrained Geometry Single Sue Catalyst Technology , 1995 .

[26]  J. Piau,et al.  Distortions of polymer melt extrudates and their elimination using slippery surfaces , 1995 .

[27]  H. Mavridis,et al.  Appraisal of a molecular weight distribution‐to‐rheology conversion scheme for linear polyethylenes , 1993 .

[28]  S. Hatzikiriakos A Slip Model for Linear Polymers Based on Adhesive Failure , 1993 .

[29]  H. Mavridis,et al.  Temperature dependence of polyolefin melt rheology , 1992 .

[30]  P. Gennes,et al.  Shear-dependent slippage at a polymer/solid interface , 1992 .

[31]  M. Denn,et al.  On the apparent relation between adhesive failure and melt fracture , 1990 .

[32]  Douglass S. Kalika,et al.  Wall Slip and Extrudate Distortion in Linear Low‐Density Polyethylene , 1987 .

[33]  H. Yamane,et al.  A collaborative study of the stability of extrusion, melt spinning and tubular film extrusion of some high-, low- and linear-low density polyethylene samples , 1987 .

[34]  A. V. Ramamurthy Wall Slip in Viscous Fluids and Influence of Materials of Construction , 1986 .

[35]  J.C.M. Li,et al.  Impression creep of β-tin single crystals , 1979 .

[36]  G. G. Smith,et al.  Properties of amorphous and crystallizable hydrocarbon polymers. I. Melt rheology of fractions of linear polyethylene , 1979 .

[37]  F. Cogswell Stretching flow instabilities at the exits of extrusion dies , 1977 .

[38]  J. Tordella UNSTABLE FLOW OF MOLTEN POLYMERS , 1969 .