Regional methods for trend detection: Assessing field significance and regional consistency

This paper describes regional methods for assessing field significance and regional consistency for trend detection in hydrological extremes. Four procedures for assessing field significance are compared on the basis of Monte Carlo simulations. Then three regional tests, based on a regional variable, on the regional average Mann-Kendall test, and a new semiparametric approach, are tested. The latter was found to be the most adequate to detect consistent changes within homogeneous hydro-climatic regions. Finally, these procedures are applied to France, using daily discharge data arising from 195 gauging stations. No generalized change was found at the national scale on the basis of the field significance assessment of at-site results. Hydro-climatic regions were then defined, and the semiparametric procedure applied. Most of the regions showed no consistent change, but three exceptions were found: in the northeast flood peaks were found to increase, in the Pyrenees high and low flows showed decreasing trends, and in the Alps, earlier snowmelt-related floods were detected, along with less severe drought and increasing runoff due to glacier melting. The trend affecting floods in the northeast was compared to changes in rainfall, using rainfall-runoff simulation. The results showed flood trends consistent with the observed rainfall.

[1]  K. Mardia 9 Tests of unvariate and multivariate normality , 1980 .

[2]  Maciej Radziejewski,et al.  Trend detection in river flow series: 1. Annual maximum flow / Détection de tendance dans des séries de débit fluvial: 1. Débit maximum annuel , 2005 .

[3]  Khaled H. Hamed,et al.  A modified Mann-Kendall trend test for autocorrelated data , 1998 .

[4]  Richard M. Vogel,et al.  Trends in floods and low flows in the United States: impact of spatial correlation , 2000 .

[5]  H. B. Mann Nonparametric Tests Against Trend , 1945 .

[6]  B. Renard,et al.  Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology , 2007 .

[7]  A. Robson,et al.  Evidence for trends in UK flooding , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  S. Yue,et al.  Regional streamflow trend detection with consideration of both temporal and spatial correlation , 2002 .

[9]  H. L. Penman Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Robert L. Wilby,et al.  When and where might climate change be detectable in UK river flows? , 2006 .

[11]  Sylvie Parey,et al.  Trends and climate evolution: Statistical approach for very high temperatures in France , 2007 .

[12]  Zbigniew W. Kundzewicz,et al.  Trend detection in river flow series: 2. Flood and low-flow index series / Détection de tendance dans des séries de débit fluvial: 2. Séries d'indices de crue et d'étiage , 2005 .

[13]  W. B. Langbein,et al.  Information content of the mean , 1962 .

[14]  Valérie Ventura,et al.  Controlling the Proportion of Falsely Rejected Hypotheses when Conducting Multiple Tests with Climatological Data , 2004 .

[15]  Les changements climatiques en France au XXè siècle. Etude des longues séries homogénéisées de données de température et de précipitations. , 2002 .

[16]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[17]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[18]  Brigitte Dubuisson,et al.  Evolution des extrêmes climatiques en France à partir des séries observées , 2006 .

[19]  C. Vincent Fluctuations des bilans de masse des glaciers des Alpes françaises depuis le debut du 20e siècle au regard des variations climatiques , 2002 .

[20]  Daniel S. Wilks,et al.  On “Field Significance” and the False Discovery Rate , 2006 .

[21]  C. Perrin,et al.  Improvement of a parsimonious model for streamflow simulation , 2003 .

[22]  C. Michel,et al.  A distribution‐free test to detect gradual changes in watershed behavior , 2003 .

[23]  R. E. Livezey,et al.  Statistical Field Significance and its Determination by Monte Carlo Techniques , 1983 .

[24]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[25]  L. Tallaksen,et al.  Hydrological drought : processes and estimation methods for streamflow and groundwater , 2004 .

[26]  Peter Molnar,et al.  Streamflow trends in Switzerland , 2005 .

[27]  M. Bayazit,et al.  Trends in the Maximum, Mean, and Low Flows of Turkish Rivers , 2005 .

[28]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[29]  Jamie Hannaford,et al.  An assessment of trends in UK runoff and low flows using a network of undisturbed catchments , 2006 .

[30]  Kerstin Stahl,et al.  Have streamflow droughts in Europe become more severe or frequent? , 2001 .

[31]  Etienne Leblois,et al.  Dynamics of River Flow Regimes Viewed through Attractors , 2003 .

[32]  O. Mestre,et al.  Méthodes statistiques pour l'homogénéisation de longues séries climatiques , 2000 .

[33]  Michel Lang,et al.  Evolution des extrêmes hydrométriques en France à partir de données observées , 2006 .

[34]  Michael D. Dettinger,et al.  Changes toward Earlier Streamflow Timing across Western North America , 2005 .

[35]  Martin Funk,et al.  Ice ablation as evidence of climate change in the Alps over the 20th century , 2004 .

[36]  Cecilia Svensson,et al.  Trends in river floods : why is there no clear signal in observations? , 2006 .

[37]  B. Renard Détection et prise en compte d’éventuels impacts du changement climatique sur les extrêmes hydrologiques en France , 2008 .

[38]  Klaus Hasselmann,et al.  Conventional and Bayesian approach to climate‐change detection and attribution , 1998 .

[39]  A. Black,et al.  Re-assessing the flood risk in Scotland. , 2002, The Science of the total environment.

[40]  M. Kendall,et al.  Rank Correlation Methods , 1949 .

[41]  K. Hasselmann Optimal Fingerprints for the Detection of Time-dependent Climate Change , 1993 .

[42]  Serge Planton,et al.  Detecting climate change at a regional scale: The case of France , 2002 .

[43]  P. Javelle Caractérisation du régime des crues : le modèle débit-durée-fréquence convergent ; approche locale et régionale , 2001 .

[44]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[45]  J. R. Wallis,et al.  Hydro-Climatological Trends in the Continental United States, 1948-88 , 1994 .

[46]  A. Tamburini,et al.  Zonage climatique de la France à partir des séries de précipitations (1971-1990) du réseau climatologique d'état , 1996 .