Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions.

[1]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[2]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[3]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[4]  P. Tan,et al.  Carrier and polarization dynamics in monolayer MoS2. , 2013, Physical review letters.

[5]  Xiaobo Yin,et al.  Exciton-related electroluminescence from monolayer MoS2 , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[6]  O. Vaughan Nanoparticle surfactants: In a jam , 2013 .

[7]  P. Jarillo-Herrero,et al.  Electrically Tunable PN Diodes in a Monolayer Dichalcogenide , 2013 .

[8]  Hongtao Yuan,et al.  Zeeman-type spin splitting controlled by an electric field , 2013, Nature Physics.

[9]  Hyunyong Choi,et al.  Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics , 2013, 1308.2023.

[10]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[11]  Lain‐Jong Li,et al.  Large-Area and Highly Crystalline WSe2 Monolayers: from Synthesis to Device Applications , 2013 .

[12]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[13]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[14]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[15]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[16]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[17]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[18]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[19]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[20]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[21]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[22]  J. Ullrich,et al.  Strongly enhanced backward emission of electrons in transfer and ionization. , 2012, Physical review letters.

[23]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[24]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[25]  E. Haller,et al.  Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[26]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[27]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[28]  P. Avouris,et al.  Efficient narrow-band light emission from a single carbon nanotube p-n diode. , 2010, Nature nanotechnology.

[29]  P. Ajayan,et al.  Phonon-assisted electroluminescence from metallic carbon nanotubes and graphene. , 2010, Nano letters.

[30]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[31]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[32]  B. Jonker,et al.  Intershell exchange and sequential electrically injected spin populations of InAs quantum-dot shell states. , 2008, Physical review letters.

[33]  Fengnian Xia,et al.  A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. , 2008, Nature nanotechnology.

[34]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[35]  H. Dai,et al.  Electrically driven thermal light emission from individual single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[36]  R. Doyon,et al.  Exciton formation and annihilation during 1D impact excitation of carbon nanotubes. , 2006, Physical review letters.

[37]  Dirk Englund,et al.  Coupling of PbS quantum dots to photonic crystal cavities at room temperature , 2005, SPIE OPTO.

[38]  Phaedon Avouris,et al.  Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes , 2005, Science.

[39]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.